
Supercompilation of Double Interpretation
 (How One Hour of the Machine's Time Can Be Turned to

One Second)
Aliaksandr Karliukou

Department of Mathematics,
Yanka Kupala State University of Grodno,
22 Ozheshko St., Grodno, 230023, Belarus

+375-(152)-443487

korlyukov@grsu.grodno.by

Andrei P. Nemytykh
State Key Lab of Software Engineering,

Wuhan University, Wuhan,
Hubei, 430072, China
+86-(27)-87682438

nemytykh@whu.edu.cn
and

Program Systems Institute RAS,
Pereslavl-Zalessky,

Yaroslavl region, 152140, Russia
+7-(08535)-98024

nemytykh@math.botik.ru

ABSTRACT
Supercompilation is a program transformation method that can
achieve partial evaluation, and in some respect more powerful. In
this paper, we describe some experiments with the supercompiler
Scp4. We specialize an XSLT-interpreter w.r.t. a Turing Machine
interpreter written in XSLT. The running time speedup observed
by us is entered in the title of this paper.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Language Constructs and
Features – formal definitions, control structures.

F.3.2 [Logic and Meaning of Programs]: Specifying, Verifying
and Reasoning About Programs.

General Terms
Algorithms, Measurement, Performance, Experimentation,
Languages, Theory.

Keywords
Automatic program transformation, Supercompilation,
Specialization, XML, XSLT, Functional programming languages,
Refal.

1. INTRODUCTION
This paper concerns automatic program transformation with the
object of running time optimization. We use the supercompiler
Scp4 (see [17],[18]) as the transformer. The subjects to be
transformed with the supercompiler Scp4 are programs written in
a functional programming language Refal (see [26],[31],[23]), a
brief introduction to which is given below. The output language
of Scp4 is Refal as well. The supercompiling procedure is enough
good for processing of interpreting algorithms. The aim of our

work is to demonstrate some abilities of the supercompiler Scp4
(see [17],[18]).

The self-applicability of any program transformer is very
attractive (see [3]). Here is a step to solve this task (with the
supercompiler Scp4): we consider an example of the
supercompilation of a double interpretation. The running time
speedup observed by us is entered in the title of this paper.

Let us formulate the task. We deal with a number of subjects
relating one to another. Following after Turchin
([28],[29],[30],[15]), we denote an abstract functional call with
the angular brackets; the left angular bracket is followed by the
function name.

1. A Turing Machine takes a tape as its argument, let us
denote that as <TM e.tape>

2. An interpreter IntTM of the Turing Machine written in
XSLT ([33],[34]) takes an XML document (“written on
the tape”) and a DTD ([33],[4]) as its arguments, let us
denote that as <IntTM (e.DTD) (e.XML)> or in more
details:

<IntTM (e.DTD) e.tape >
 <TM ! >

We carried the call to a concrete Turing Machine over
to the next line below to emphasize that the subject to
be transformed by the interpreter is this call itself rather
then its value. The exclamation mark stresses the
semantics of the tape: the tape is processed by the
concrete Turing Machine, even though indirectly by
way of the interpreter of the Turing Machine; a concrete
Turing Machine is able to process an arbitrary concrete
tape.

mailto:korlyukov@grsu.grodno.by
mailto:nemytykh@whu.edu.cn
mailto:nemytykh@math.botik.ru

3. Let IntXSLT be an interpreter of an algorithmically
universal subset of the language XSLT (see the section
No. 4 below) written in Refal (see the subsection No.
2). It takes an XSLT-program, an XML-document, a
DTD-definition as its inputs, let us denote that as

<IntXSLT (e.XSLT) (e.DTD) (e.XML)>

or in more details:

<IntXSLT e.DTD e.tape >
 <IntTM (!) ! >
 <TM ! >

4. Let us formulate a task for specialization (by the
supercompiler Scp4) of the interpreter IntXSLT with
respect to the interpreter IntTM, which, in its turn,
performs the concrete Turing Machine TM. The tape of
the Turing Machine is defined as an XML-document,
which, before to be transformed, is syntactically
checked with a validator DTD ([33]). Let us denote that
as

<SCP4 >
 <IntXSLT e.tape >
 <IntTM <DTD ! > >
 <TM ! >

The DTD-description is used as a filter by us (that is to
say, a recursive dynamic typing with means of the
language Refal) for the input XML-documents.

Thus in this example the supercompiler deals with the five
subjects mentioned above. If the following task will be formulated
for the supercompiler

<IntXSLT e.TM e.tape >
 <IntTM <DTD ! ! >>
 < ! ! >

 Figure 1.
then the output of the supercompiler will an interpreter of the
Turing Machine written in Refal. It is a substantially interesting
question about the running time efficiency of this result program-
interpreter. It is also interesting to investigate the structure of the
obtained program.

While formulation of the scheme

 <IntXSLT e.tape >
 <IntTM <DTD ! >>
 <TM ! >

Figure 2.

provides a concrete Refal-program. For example, the program
TMDoublePQ doubling characters P and replacing them with Qs,
or the program TMPQ replacing Ps with Qs.

1.1 The language Refal
The programming language Refal (by V.F. Turchin) is a first-
order functional language with an applicative (inside-out)

semantics. Roughly speaking, a program in Refal is a term
rewriting system. The semantics of Refal is based on pattern-
matching. As usually, the rewriting rules are ordered to match
from the top to the bottom. The terms are generated with two
constructors. The first is the concatenation. It is binary,
associative and is used in infix notation, which allows us to drop
its parenthesis. In Refal the blank is used to denote the
concatenation. The second constructor is unary. It is syntactically
denoted with just its parenthesis (that is without a name). Angular
brackets are used to denote a function call. Its name is put after
the left bracket. Every function is unary. In Refal the ground terms
are referred to as expressions. Empty sequence is a special basic
ground term. This term is denoted with nothing and called
"empty expression". It is neutral element (both left and right) of
the concatenation. All other basic ground terms are named as
"symbols". There exist three types of basic non-ground terms
(called variables) - e.name, s.name and t.name. An e-variable can
take any expression as its value, an s-variable can take any symbol
as its value, a t-variable -- any symbol and any expression
enclosed with the parenthesis. The associativity of the
concatenation causes the set of Refal terms to be more expressive
than the set of Lisp terms.

Example:

$ENTRY Go {
= <Search (Valentin Turchin)
 ((Alanzo Church Lambda-calculus)
 (Andrei Markov Markov-algorithm) (John McCarthy Lisp)
 (Emil Post Post-system) (Guy Steel Scheme)
 (Valentin Turchin Refal) (Alan Turing Turing-machine))
 >;
}

Search {
 (s.key1 s.key2) ((s.key1 s.key2 e.value) e.table) = (e.value);
 (s.key1 s.key2) ((e.row) e.table)
 = <Search (s.key1 s.key2) (e.table)>;
}

The result of the program is the following Refal-expression:
(Refal). On the left hand side of the function Go we see the empty
expression. The right side of the function Go, the left side of the
first sentence and the both sides of the second sentence of the
function Search show the associativity of the concatenation.

A detailed description of the language is available in an electronic
format ([26]).

All residual programs from our paper were constructed
automatically by Scp4 and modified by hand-formatting only.

2. TURING MACHINE
In the theory of algorithms the concept of Turing Machine (TM)
is broadly used as a precise equivalent of our intuitive idea of an
algorithm (see, for example, [14]). The memory of a TM, called
tape, is an infinite chain of cells (in the both sides) with two
adjacent neighbors each. A program for the TM is a finite
sequence of instructions. Each instruction has the form:

CurrState CurrSymb NextSymb NextState Movement

Accordingly to the program, a pointer is being moved from one
cell to its adjacent neighbor by the TM, this cell’s content is
changed as well as the current state of the machine. The start state
is called 'start' and the final is called 'stop'. The input to the TM is
a finite array of rightward cells following blanks and followed by
blanks (denote the blank with B).

Consider an example of a program for the TM. The program
DoublePQ replaces an array of the characters P with another
array, where each of the Ps was changed with two Qs (one per
cell). If, for instance, in the beginning of the TM's job there are
exactly ten Ps on the tape (followed one by another) and the
pointer indicates to the first of them, then, when the machine will
stop, the tape will contain twenty Qs followed one after another.

Table 1. The program DoublePQ

CurrState start start Start moveleft moveleft
CurrSymb B Q P Q B
NextSymb B Q Q Q Q
NextState stop start moveleft moveleft Start
Movement right right Left left right

As a first experiment we supercompile an interpreter of the TM.
The interpreter is written in Refal-5 (see [26],[31]):

Table 2. Interpreter of the Turing Machine written in Refal
* Call for a concrete Turing machine (a program).
$ENTRY Go {
 (e.LeftTape) (s.CurrSymb) (e.RightTape) =
 <Turing (
 (start B B stop right)
 (start Q Q start right)
 (start P Q moveleft left)
 (moveleft Q Q moveleft left)
 (moveleft B Q start right))
 (start) (e.LeftTape) (s.CurrSymb) (e.RightTape) >;
 }

* The interpreter itself.
* <Turing (e.Program) (s.CurrState)(e.LeftPartOfTape)
* (s.CurrSymb)(e.RightPartOfTape)>
Turing {
 (e.instr) (stop) (e.left) (s.symbol) (e.right)
 = (e.left) (s.symbol) (e.right) ;

 (e.instr) (s.q) (e.left) (s.symbol) (e.right)
 = <Turing (e.instr) <Turing1
 <Search (s.q s.symbol) (e.instr)>
 (e.left) (s.symbol) (e.right)> >;
 }

Turing1 {
 (s.c s.r left) () (s.symbol) (e.right) = (s.r) () (B) (s.c e.right) ;
 (s.c s.r left) (e.left s.a) (s.symbol) (e.right)
 = (s.r) (e.left) (s.a) (s.c e.right) ;
 (s.c s.r right) (e.left) (s.symbol) () = (s.r) (e.left s.c) (B) () ;
 (s.c s.r right) (e.left) (s.symbol) (s.a e.right)
 = (s.r) (e.left s.c) (s.a) (e.right) ;
 }

Where the definition of the function Search can be found in the
Introduction.

The entry point Go has fixed a context to specialize this
interpreter Turing w.r.t. the given TM. The result of the
supercomilation is the following program:

Table 3. The program DoublePQ translated into Refal
* InputFormat: <Go (e.LeftTape)(s.CurrSymb) (e.RightTape)>
$ENTRY Go {
 (e.Left) (s.Symbol) (e.Right) = <F6 (e.Left) s.Symbol e.Right> ;
}

F59 {
 () () Q = (Q Q Q B) (B) () ;
 () (s.3 e.4) Q = <F6 (Q Q Q) s.3 e.4 > ;
 (e.1 s.5) (e.4) Q = <F59 (e.1) (Q e.4) s.5 > ;
 (e.1) () B = (e.1 Q Q B) (B) () ;
 (e.1) (s.3 e.4) B = <F6 (e.1 Q Q) s.3 e.4 > ;
}

F6 {
 (e.1) B = (e.1 B) (B) () ;
 (e.1) B s.5 e.4 = (e.1 B) (s.5) (e.4) ;
 (e.1) Q = (e.1 Q B) (B) () ;
 (e.1) Q s.5 e.4 = <F6 (e.1 Q) s.5 e.4 > ;
 () P = (Q Q B) (B) () ;
 () P s.5 e.4 = <F6 (Q Q) s.5 e.4 > ;
 (e.1 s.6) P e.4 = <F59 (e.1) (e.4) s.6 > ;
}

For our experiment, to see the speedup, we input 512 Ps to the
given TM.

The supercompiler Scp4 transforms programs in the dialect Refal-
5 ([26],[31]). This paper deals just with a fragment of the dialect,
called strict Refal, in which: 1) open e-variables and repeated t-
and e-variables are not allowed in the patterns ([26]); 2) the left
side of each sentence is a pattern. Evaluation of a strict Refal-
program can be seen as a sequence of elementary actions called
Refal-steps ([26]). Running time of a Refal-step, generally
speaking, is not uniformly bounded on input data. A concrete
display of this non-bounding depends on a given implementation
of the Refal Machine. Everywhere below, we mean the strict Refal
and a fixed release of Refal-5 ([31]). Under these conditions,
running time of one Refal-step, corresponding to a Refal sentence,
is uniformly bounded if the sentence does not contain repeated
occurrences of t- and e-variable in its right side. The inverse
statement is not correct. Running time of every step of the
program from [Table 2] is uniformly bounded on input data, but if
the function Turing will be declared as the program entry point,
then steps corresponding to the second sentence of this function
have not such property.

The original program takes 2 634 778 Refal-steps (15.242
seconds) for running, the result of the supercompilation takes 525
319 Refal-steps (2.053 seconds). Thus, the Refal-step speedup
StepSpeedup is 5.016 and the run-time speedup TimeSpeedup is
7.388 (for this example and this input data). All our experiments
were performed under the operating system Windows2000 with
Intel Pentium-3 CPU, 262 144 KB RAM, 500 MHz.

Consider the residual program. Many sentences handle the
borders of the tape (where the blanks are starting). With the
theoretical point of view, the tape is infinite in the both sides, but
practically it is finite, and we can either add the empty cells by
need or assume that always there exist enough many of the empty
cells. In the second case all programs look shorter. Further we
consider namely this simpler case and note what happens in the
general case.

Let us remove the first and the second sentences in the definition
of Turing1 (from the original program), then after the
supercompilation we have the following program, which is easier
to be followed:

Table 4. The simpler residual program DoublePQ (in Refal)
* InputFormat: <Go (e.LeftTape)(s.CurrSymb) (e.RightTape)>
$ENTRY Go {
 (e.Left) (s.Symbol) (e.Right) = <F6 (e.Left) s.Symbol e.Right > ;
}

F27 {
 (e.1 s.2) (e.4) Q = <F27 (e.1) (Q e.4) s.2 > ;
 (e.1) (s.3 e.4) B = <F6 (e.1 Q Q) s.3 e.4 > ;
}

F6 {
 (e.1) B s.3 e.4 = (e.1 B) (s.3) (e.4) ;
 (e.1) Q s.3 e.4 = <F6 (e.1 Q) s.3 e.4 > ;
 (e.1 s.2) P e.4 = <F27 (e.1) (e.4) s.2 > ;
}

The things became clear: the function F6 corresponds to the inner
state start, while the function F27 corresponds to the inner state
moveleft. Each sentence corresponds to one instruction of the
TM. The number of the Refal-steps is equal to the number of the
TM's steps. The residual program contains no the terms: start,
moveleft, stop. That output of the supercompiler is an optimal
Refal-program, i.e. a compilation of the program for the TM
([Table 1]) into a Refal-program ([Table 4]) took place. Here,
under the "optimalness" we mean an optimalness within the limits
of the input algorithm defined with the original program: no
remarkable changes of this algorithm (in its essence) have
happened.

3. THE DECLARATIVE LANGUAGE XSLT
FOR TRANSFORMING DOCUMENTS:
EXPERIMENTS WITH THE
SUPERCOMPILER SCP4
3.1 The Languages XML, DTD, XSLT
XML describes a class of data objects called XML documents and

partially describes the behavior of computer programs which
process them (see [33],[32]). XSLT is designed to describe
transformations of the XML documents [34]. The pair (XSLT,
XML) is a programming language. This language requires typing
of the data: the domain of a given program is being described in
the language DTD [33].

From point of view of supercompilation, the given language
seems an interesting object through the following reasons. On the
one hand, this is a real language for transforming the internet-
documents, which, eventually, will be broadly disseminated. On
the other hand, data of this language is very similar to Refal-data.
At last, the language XSLT for transforming of the documents is
enough poor in its expressive means and stimulates users to
develop programs passing the only time along the data (that is to
say, once transformed part of the data is not available for further
processings). The last circumstance simplifies the supercompiling
procedure, and provides possibility for obtaining more efficient
(in running time) residual programs.

Stress the previous remark is also true for a program
transformation technique called specialization [5],[6]. The
customary separation of data on static and dynamic ones (known
and unknown in transforming time) (see [6],[7],[21]), from a
point of view of the transforming procedure, could be made more
accurate: on static, dynamic ones being single-passed, dynamic
ones being twice-passed and so on. Interesting transformation of
the algorithms (in "essence") can be achieved only by tools for
analyzing and transforming the poly-processing of the data. The
supercompiler Scp4 has a number of such simple tools (see [18]).

The below-considered interpreter of a TM, certainly, has the poly-
processing tape. Refal-5 is the input and the output language for
the supercompiler Scp4. Therefore, XSLT-programs are
transformed indirectly through an interpreter of XSLT written in
Refal-5. And, hence, on the output we obtain a program written in
Refal-5 as well.

Finally, we note the tools analyzing the poly-processing make
possibilities for dynamic typing of the data in supercompile-time.
This information can lead to some additional transformations. The
requirement to describe the domain of an XSLT-program (by
means of DTD) makes such typing natural.

The language DTD represents an extended variant of the language
of the regular expressions [22],[33].

3.2 The Regular Expressions
XML provides a mechanism, the document type declaration
(DTD), to define constraints on the logical structure and to
support the use of predefined storage units. An XML document is
valid if it has an associated document type declaration and if the
document complies with the constraints expressed in it. An XSLT
transformer uses the declarations for checking documents. We
implemented the following variant of the language DTD. (The
double “or”-sign || is a meta-symbol, while the single | is just a
regular character.)

Table 5. Variant of the language DTD
ElementDec ::= <!ELEMENT Name ContentSpec >

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference ’00, Month 1-2, 2002, City, State.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

ContentSpec ::= EMPTY || Children*
Children ::= Choice || Seq
Choice ::= (Cp OrCp*)
Seq ::= (Cp AndCp*)
Cp ::= #PCDATA || CpAlt*
CpAlt ::= Name || Choice || Seq
OrCp ::= |Cp
AndCp ::= ,Cp

AttlistDecl ::= <!ATTLIST Name AttDef* >
AttlistDecl -- can be encountered just one time.
AttDef ::= Name AttType DefaultDecl
AttType ::= CDATA
DefaultDecl ::= #IMPLIED || IgnoredDecl
IgnoredDecl – Any declaration. That is interpreted as #IMPLIED.

EntityDecl ::= <!ENTITY % Name EntityValue >
EntityValue ::= Dquote PEReference* Dquote
 || Quote PEReference* Quote
Dquote :: = "
Quote :: = '
PEReference ::= %Name ;

For the undefined conceptions we refer the reader to the
specifications of the language DTD (see [33]). We use the
following DTD defining the structure of the tape and programs for
the below-defined TM written in XSLT.

Table 6. Document type declaration for the TM
<!ELEMENT Go (Instruction, State, LeftTape, Symbol,
 RightTape)>
<!ELEMENT LeftTape (Nod) >
<!ELEMENT RightTape (Nod) >
<!ELEMENT Nod ((Cell, Nod) | Cell) >
<!ELEMENT Symbol (#PCDATA) >
<!ELEMENT Cell (#PCDATA) >
<!ELEMENT State (#PCDATA) >
<!ELEMENT Instruction (Instruction | EMPTY) >
<!ATTLIST Instruction
 CurrState CDATA #IMPLIED
 CurrSymb CDATA #IMPLIED
 NextSymb CDATA #IMPLIED
 NextState CDATA #IMPLIED
 Movement CDATA #IMPLIED >

 Here Instruction is a sequence of the instructions for a concrete
TM, State is a current inner state, LeftTape is the left part of the
tape followed by the current cell, Symbol denotes a symbol
written in the current cell, RightTape denotes the right part of the
tape.

It is naturally to define a tape for a TM just as a sequence of the
cells (Cells). We refused such representation by the following two
reasons. By definition, all TM's actions take place locally around
a current cell. The language XSLT does not provide a simple
possibility to rewrite a tail of the tape; one is forced to rewrite the
tail by symbol-wise, that leads to inefficiency. This is one of the
reasons why we write out (in the XML-document) one symbol
and a reference to the tail. The second reason is, by the essence of
the interpretation, it is frequently necessary to compare contents

of the cells from different places. The instruction <xsl:for-each .
. . > moves us inside a sub-tree and the other parts of the whole
tree become either unavailable or available with a complicated
way. By the same reasons, the TM's instructions are written out
analogically.

Above we mentioned the DTD is used for checking of the logical
structure of the input XML-document. On the other hand, this
knowledge can help to develop more efficient programs. In one-
level programming (without usage of a program transformer), it is
not in the least obviously and simply to use this information for
decreasing of running time of an algorithm. It is a paradox, but the
supercompiler is able to implement that easy and simple. That is
caused with that the supercompiler successfully processes
composition of functions and, by definition, uses its own
discretion to extend domains of the partial functions. We use a
program-filter, which is the identity partial function on the
documents corresponding to a given DTD and forcing an
abnormal stop of the machine on the other documents.

3.3 An Interpreter of a Fragment of XSLT
Written in Refal and Supercompilation of It
This paper concerns supercompilation of double interpretation,
i.e. when one interpreter interprets another interpreter interpreting
a given program. In this section we consider the first interpreter,
the second will be considered in the following section.

An interpreter VT.ref (see [11]) of a fragment of XSLT was
written in the language Refal-5 [26],[31]. The aim of our work is
a demonstration of the possibility of the program transformer
Scp4 [17],[18] to work as a compiler from some language into
Refal-5 (see [1],[3]) and to generate an efficient program in Refal-
5. The speedup of the generated program w.r.t. interpretation of
its pro-image is quite remarkable.

The interpreter VT.ref accepts (as its input) programs in a small
fragment of XSLT closed with the following syntactic
constructions

Table 7. Fragment of the language XSLT.
<xsl:apply-templates select = qexpression >
</xsl:apply-templates>
<xsl:call-template name = NAME>
 <!-- Content: xsl:with-param? -->
</xsl:call-template>
<xsl:with-param name = NAME > <!-- Content: template -->
</xsl:with-param>
<xsl:choose> <!-- Content: (xsl:when+, xsl:otherwise?) -->
</xsl:choose>
<xsl:when test = boolean-expression> <!-- Content: template -->
</xsl:when>
<xsl:otherwise> <!-- Content: template --> </xsl:otherwise>
<xsl:copy-of select = qexpression />
<xsl:element name = NAME > <!—Content: template -->
</xsl:element>
<xsl:attribute name = NAME > <!-- Content: template -->
</xsl:attribute>
<xsl:for-each select = qexpression> <!-- Content: template -->
</xsl:for-each>
<xsl:if test = boolean-expression> <!-- Content: template -->
</xsl:if>

<xsl:param name = NAME > </xsl:param>
<xsl:text > <!-- Content: #PCDATA --> </xsl:text>
<xsl:value-of select = qexpression />

qexpression ::= dquote expression dquote
expression ::= expr || expr / expression || quote char-string quote
expr ::= xt:built-in(expr) || $Name || @Name || dot
built-in ::= node-set
dquote ::= "
quote ::= '
dot ::= .
Name ::= NAME
qboolean-expression ::= dquote boolean-expression dquote
boolean-expression ::= expression Boolean-operator expression
boolean-operator ::= = || !=

For the undefined conceptions we refer the reader to the
specifications of XSLT (see [34]). Our main aim is demonstration
of Scp4, but not a literal implementation of XSLT.

The built-in function xt:node-set was implemented to provide
algorithmic universality to the fragment of XSLT. It is impossible
to define repeated transformations of the XML-data by the XSLT-
program, if this built-in function is not used. That is the main
reason why the language XSLT is becoming an admirable
practical object for supercompilation. Namely, that makes easy to
specialize the interpreter w.r.t. a given program, when the given
program does not contain a call of xt:node-set (see [1]).
Emphasize, this property also is very meaningful for partial
evaluators [5],[6],[7],[21].

3.4 An Interpreter of the Turing Machine in
the Language XSLT
While the interpreter VT.ref ([11]) defines the semantics of the
considered fragment of XSLT in terms of the language Refal, the
second interpreter considered in this section is an interpreter of
the Turing Machine written in the fragment of XSLT.

The existence of such interpreter of the Turing Machine proves
the algorithmic universality of the chosen subset of XSLT. The
sources of the interpreter are available for immediate download
(see [11]).

The following documents were created for our
comparative experiments:

• TM.dtd - the description of the domains of the programs
TM.xsl , TMPQ.xsl and TMDoublePQ.xsl,

• TM.xml – the input data for the programs TM.xsl ,
TMPQ.xsl and TMDoublePQ.xsl,

• TM.xsl - the interpreter of the Turing Machine, which
does not take care of the tape’s borders. The
experiments (supercompilation) were done for the
concrete TM (the program to be evaluated with this
interpreter) from the example DoublePQ [Table 1],

• TMPQ.xsl - a variant of the previous program, which
evaluates a given TM for replacement all the characters
P with the Qs.

• TMDoublePQ.xsl - a variant of the program TM.xsl
evaluating a given TM for doubling of the characters P
and replacing them with the Qs.

• TMN.dtd - the description of the domains of the
programs TMNPQ.xsl and TMNDoublePQ.xsl,

• TMN.xml – the input data to the programs TMNPQ.xsl
and TMNDoublePQ.xsl,

• TMNPQ.xsl, TMNDoublePQ.xsl - variants of
TMPQ.xsl, TMDoublePQ.xsl , where the tape’s borders
are being worked on: the empty cells are added on the
left hand and the right hand of the tape, if that is
necessary.

These documents are available for immediate download (see [11])
and some of them can be found in the attachment No. 1.

3.5 The Experiments with Supercompilation
of Double Interpretation
3.5.1 On adequate mapping of results of
supercompilation
Before considering of the results of the experiments, it is
necessary to say that the real internal language defining programs
to be transformed by the supercompiler SCP4 is not the language
Refal-5. But it is a Refal-graph language (see [24],[23],[18]), in
which the steps of the Refal Machine are decomposed into more
elementary actions and the pattern-matching takes into account
not the only pattern from the left-side of the Refal-sentence, but,
in a sense, all the left sides from the Refal-definition
"simultaneously". I.e. in the Refal-graph language we can describe
the process of pattern-matching as a non-trivial tree, where the
failures during the pattern-matching backtrack us to the closest
branching. In this sense, the branchings are "functional", i.e. they
behave like the Refal-5 functions, the failure inside of which leads
to an abnormal stop. Here one can refer to a rough analogy with
the blocks in Refal-5 (see [26]).

SCP4 translates a program into the Refal-graph language, and
only after that it starts the transforming. When the residual Refal-
graph program is ready, then SCP4 translates it in a Refal-
program. From point of view of a user, Refal-5 is the input (as
well as the output) language for this supercompiler.

A program in the Refal-graph language often contains simple
syntactic information, which allows optimization of the process of
interpreting, if this process is running directly. Refal-5 does not
contain some of such syntactic entities. That can be lead to a non-
adequate translation (in Refal-5) of the results of the
transformations with SCP4 [20]. Therefore, from a practical point
of view, the direct interpretation of the Refal-graph language
makes meaningful interest (we would like to point to the work by
A.P. Konyshev [12])

3.5.2 The testing and the time analysis
We collected the running times and running steps of the examples
described in the previous section in two tables. In each of the
examples the number of the non-empty cells on the TM's tape is
equal to 16. Such choice was motivated by the proportion of the
times, which takes place: that is hours and seconds. Else either
one of the times is huge or the other is very little. The first
columns stay for the names of the examples. The second columns
show information about the running of the original interpreter
VT.ref (of the subset of XSLT), while the third columns are
responsible for residual programs after the repeated
supercompilation. The names of the columns are clear. The
number TimeSpeedup (it is a quotient of the contents from the
second column by the third one) is not indicated, if dividing by
zero happens.

Table 8. Step speedup
 Original

prg.
Residual
prg.

StepSpeedup

TM 1960210 3195 613
TMPQ 48789 40 1219
TMDoublePQ 1960475 519 3777
TMNPQ 49512 58 853
TMNDoublePQ 1988750 1018 1953

Table 9. Time speedup (seconds)
 Original

prg.
Residual
prg.

TimeSpeedup

TM 14.741 0.070 210
TMPQ 0.350 0.000 --------------
TMDoublePQ 14.761 0.000 --------------
TMNPQ 0.300 0.000 --------------
TMNDoublePQ 13.830 0.020 691

Let us make some explanations to the tables.

Consider the third column in [Table 8]. The residual replacement
of 16 characters P with 16 characters Q takes 40 Refal-steps,
when the tape borders are not taken into account, and that takes
58 ones, when the borders are treated. Here the number of Refal-
steps is grater than the expected 16, because a non-adequate
translation of the program from the Refal-graph language in
Refal-5 (see the section 2.5.1) and the representation of the
character's sequence as a tree structure. The residual doubling of
16 characters P takes 519 Refal-steps, when the tape borders are
not taken into account, and that takes 1018 steps, when the
borders are treated (the number of the actions grows like 2*n^2).
During the interpretation this example takes 3195 Refal-steps; the
reason is the looking for a needful TM's instruction each time.
These numbers are quite clear: they demonstrate that seriously
transformations happened during the supercompilation.

Consider the second column in [Table 8]. The numbers from it are
grater: that is normal, because the interpreting of the interpreter.
The growth of the number of the elementary actions (w.r.t. single
interpretation) could be roughly viewed as "squaring".

The small numbers for the residual programs causes the very big
StepSpeedup. That is expected because the properties of the

XSLT-programs from our examples. The coefficient TimeSpeedup
cannot be seen as a reflection of the real world: too big and too
small times are not believable, they are just some properties of the
hardware, the RAM's configuration determined with the external
software environment and so on.

We have tried indirectly to determine the time speedup obtained
by the two supercompilations (the one after the other) of the
double interpretation. The problem to determinate this coefficient
is caused by either the memory limit (swapping takes place)
during the original interpretation (before supercompilation) or the
zero-time of running of the residual program. The question is
really interesting, because the very big step speedup still does not
mean a similar time speedup. While all the TM's steps are uniform
and their running time is approximately the same, then running
time of the Refal-steps can be dispersed along a large scale.

The result of our thinking is the time speedup is equal to the step
speedup (approximately).

Consider the third row TMDoublePQ from the table [Table 8],
where the step speedup is equal to 3777. Let us increase the
number of Ps on the tape: namely, write two Ps on the tape, after
that write four Ps and so on, each time doubling of this number.
By the sense of the algorithm, the depending of the steps on the
number of Ps looks like the square, i.e. the doubling of the Ps
has to cause multiplication of the steps by four. Our experimental
observation showed the same effect, while swapping (during the
original interpretation) did not happen. Further we were launching
only the residual programs while their running time became
comparable with one second. Elementary arithmetical operations
show that the number StepSpeedup non-remarkable differs from
the number TimeSpeedup.

To be height-lighted: the time speedup TimeSpeedup turns one
hour to one second.

As an example we consider the residual Refal-program, which is a
result of supercompilation of TMDoublePQ.

Table 10. The result of supercompilation of TMDoublePQ
$ENTRY Go {
 ((Instruction e.2) e.0) ((State) e.4)
 ((LeftTape) e.6) ((Symbol) s.8)
 ((RightTape) e.7) e.1 = <F16 (e.6) (e.7) s.8>;
 }

F69 {
 (((Nod) ((Cell) Q) ((Nod) e.7) e.5) e.6) ((Nod) e.4) e.1
 = <F69 (((Nod) e.7)) ((Nod) ((Cell) Q) ((Nod) e.4))>;

 (((Nod) ((Cell) B) ((Nod) e.7) e.5) e.6) ((Nod) ((Cell) s.8)) e.1
 = <F16 (((Nod) ((Cell) Q) ((Nod) ((Cell) Q)
 ((Nod) e.7)))) () s.8>;

 (((Nod) ((Cell) B) ((Nod) e.7) e.5) e.6)
 ((Nod) ((Cell) s.8) ((Nod) e.9) e.4) e.1
 = <F16 (((Nod) ((Cell) Q) ((Nod) ((Cell) Q) ((Nod) e.7))))
 (((Nod) e.9)) s.8>;
 }

F16 {
 (((Nod) e.5) e.6) (((Nod) ((Cell) s.9))) B
 = ((tm) ((LeftTape) ((Nod) ((Cell) B) ((Nod) e.5)))
 ((Symbol) s.9) ((RightTape)));

 (((Nod) e.5) e.6) (((Nod) ((Cell) s.9) ((Nod) e.2) e.3) e.1) B
 = ((tm) ((LeftTape) ((Nod) ((Cell) B) ((Nod) e.5)))
 ((Symbol) s.9) ((RightTape) ((Nod) e.2)));

 (((Nod) e.5) e.6) (((Nod) ((Cell) s.9))) Q
 = <F16 (((Nod) ((Cell) Q) ((Nod) e.5))) () s.9>;

 (((Nod) e.5) e.6) (((Nod) ((Cell) s.9) ((Nod) e.2) e.3) e.1) Q
 = <F16 (((Nod) ((Cell) Q) ((Nod) e.5))) (((Nod) e.2)) s.9>;

 (e.6) (e.1) P = <F69 (e.6) e.1>;
 }

Note that the XSLT-construction <tag . . . > . . . </tag> is
encoded as ((tag . . .) . . .) in the Refal-data by the parser.

That residual program is perfect: it contains no redundancies. The
two functions F69 and F16 correspond to the internal states of the
given program for the Turing Machine. The number of the Refal-
steps of the residual program does not differ from the number of
the steps of the input TM. The terminology defining the
conceptions of the XSLT-interpreter has vanished at all.
Moreover, the terminology, defining the conceptions of the TM-
interpreter written in XSLT, has vanished at all. Running times
of the all Refal-steps are uniformly bounded on input data. All
recursions in the residual program are "tail"-recursions, i.e. (in the
essence) there exist no recursive calls but only transformation of
their arguments. One can translate this SCP4's result in a low-
level language enough efficiently: all the function calls can be
formed into jumps to labels: no stack's operations are needed (see,
for example,[12]).

We would like once more to call the reader for paying attention to
this residual program. This program clearly demonstrates our
main result. We input (to the supercompiler SCP4) an interpreter
of an algorithmically universal language, which has to interpret
another interpreter of another algorithmically universal language,
which in its turn has to interpret a simple program. After that we
input the SCP4's output again to the supercompiler. The
supercompiler SCP4 (by these two running) cleaned this double
interpretation and constructed an algorithm in Refal substantially
coinciding with the algorithm written in the TM-language.

The large names of the structures describing the TM's tape cause a
little increasing of the length of this program w.r.t. the analogical
program from the section 2.

4. SYNTACTIC ANALYSIS
The size of this paper does not allow make a precise syntactic
analysis of the objective programs from our experiments: these
programs are large. The sources of all these programs partially are
given in the text of this paper and in the attachment No. 1, their
complete versions are available by the internet (see [11]).
Furthermore, from our point of view, it is more usable that one
regards to a program transformer as an enough complicated
physical system (rather than a mathematical abstraction). Such

approach, on the one hand, allows predict behavior of the system
on the level of the ideas, disregarding some of its properties ("a
frictional force") and throwing away irrelevant technical details;
on the other hand, it assumes that the system is living and is being
developed, so understanding of its new properties can be possible
just after specification of a concrete its model being considered
("a frictional force depends only on the properties of the surfaces
contacting one with the other, but does not depend on the speed of
the slipping"). Uncomputability of more or less serious problems
of the automatic program transformation, approximation of these
problems, apparently, make any attempt of complete formalization
of the transformation non-perspective, but nevertheless such
investigations are interesting.

The most complicate "physical" characteristics of our instrument
for experimentation (SCP4) are the algorithms of: the
generalization, the structuring of the function stack [25], the
condition for folding of the driving tree and the order for passing
along the driving tree [17], [27], [18]. It is technically difficult to
follow behavior of the composition of the indicated characteristics
with other tools of the transformations.

4.1.1 The semi-compositionality
Following after N. D. Jones [7], we have to relate our interpreter
VT.ref to the semi-compositional ones. The classification of the
parameters into syntactic and non-syntactic (see [7]) took place
automatically during the supercompiling process: the
indispensable condition for a simplifying ordering (see [9],[13])
to fold of the driving tree did not allow to lose the information
about the static nature of the syntactic parameters, because during
the interpretation the length of the syntactic structures of the being
interpreted XSLT-program monotonously decreases within one
logical step of the XSLT-Machine, and the XSLT-program is
being restored in the beginning of each XSLT-step. It is necessary
to emphasize that the indicated classification took place
automatically (on-line) with one of the general tools of
supercompilation; it happened logically -- the supercompiler
SCP4 has not a special conception of a "syntactic parameter" (in
the considered context).

 Let us denote as <FunctionName ... > an abstract function call
in a meta-language, which allows reasonings ([28]) about the
whole set of the programming languages. Here, the word
"function" is used enough broadly and a corresponding
conception can be called (in a concrete language) some other
word (for instance, in XSLT it is "template"), but the
"function" always reflects an input point into a syntactic loop.

The Refal-syntax of the XSLT-interpreter (that is a property of
our interpreter) fixes an injective mapping of the function stack's
conceptions of the language XSLT into the function stack's
conceptions of the language Refal (i.e. into its corresponding
linguistic structures), preserving their stack's structure. We could
be saying about a morphism if there exists a precise definition of
the stack's structure, which does not depend on the concrete
programming language. The below-following scheme illustrates
this injective mapping:

Table 11. The “morphism” of the stacks.
<IntXSLT_refal ... >

<F_xslt ... <G_xsl ... > >

The XSLT-stack is moved to: ↓↓↓↓
<IntXSLT_refal … <IntXSLT_refal > >

 <F_xsl ... <G_xsl ... > >

The one-level denotation:

<IntXSLTF_xslt_refal ... <IntXSLTG_xslt_refal ... >>

In the scheme the nesting of the calls corresponds to their
composition. The lower line is an object to be transformed with
the upper line, the arguments of the upper calls either are disposed
directly on the upper line or are enclosed with the projection of
the corresponding upper angle brackets to the lower line.

Therefore, the information about the function stack's properties of
a part of the being interpreted data becomes indirectly available
for SCP4 and, as a consequence of that, this information is
processed with the tools for analyzing namely the function stack's
structures (see [25],[27]), but not with the general tools for
treating arbitrary data of an unknown nature.

The input point for an XSLT-program is not indicated in its
syntax, but is defined inside the body of an XML-
document [34],[33]. That causes the partial function to be
evaluated in run-time is not determined during the specialization
of the XSLT-interpreter w.r.t. a given XSLT-program, while the
XML-document is unknown. A logical consequence of this
circumstance: in supercompile-time all possible variants of the
partial functions, which can appear in run-time, have to be
considered (by definition of the interpreter). And, hence, more
non-informative (general) variants of the generalization [25],[24]
of the data of the XSLT-interpreter are created. The essence of our
repeated supercompilation (see the section [3.5.2]) is the cleaning
of the result of the first supercompilation, when one declares that
the input point should be a call of the first (defined in the XSLT
program) template. It is interesting to note that after the first phase
of the transformations the "garbage" inside the residual programs
is trivial (see the residual programs in [11]), even though,
naturally, they contain some XSLT-terms. Apparently, this is
associated with the global logic of the considered XSLT-programs
(and, certainly, with the logic of the XSLT-semantics), which
contradicts a more or lesser substantial definition of the partial
functions, which the author of the XSLT-programs did not
develop as self-dependent semantic entities.

Repeated supercompilation does matter. There exists another
evidently reason for that: the simplest elementary transformations
being performed with the supercompiler SCP4, sure, do not
commute, hence, the repeated supercompilation can produce more
effective result than the first supercompilation.

Example: Let the following Refal program be an input to Scp4.

$ENTRY Go { e.number = <UnarySum (I) (e.number)>; }
UnarySum {
(e.numb1) (I e.numb2) = I <UnarySum (e.numb1) (e.numb2)>;
(e.numb1) () = e.numb1;
}

This definition of the unary addition (being viewed separately
from the context of the function call) does not provide any
information about the output structure of the function UnarySum.

After the specialization w.r.t. the call context, a non-trivial output
format I e.out will be derived. The specialization w.r.t. this output
information takes place later than the global analyzing for the
property of identity (see [19]), so the residual recursive
component cannot be recognized as a syntactic identity function.

The result of the first supercompilation is:

$ENTRY Go { e.number = I <F7 e.number >; }
F7 {
I e.1 = I <F7 e.1 >;
 = ;
}

Now we again input the result program to Scp4 and obtain the
following perfect residual program

$ENTRY Go { e.number = I e.number; }

5. CONCLUSION
We have described a number of experiments with the
supercompiler Scp4 (see [17],[18]). We have implemented an
interpreter of an algorithmically universal fragment of the
language XSLT. The interpreter is written in a functional
programming language Refal. We have specialized the interpreter
with respect to a Turing Machine interpreter written in XSLT,
when the last interpreter has to evaluate the given programs for
the TM. After that we input the SCP4's outputs again to the
supercompiler. The supercompiler SCP4 cleaned this double
interpretation and constructed algorithms in Refal substantially
coinciding with the algorithms written in the TM-language. The
examples we presented show considerable speedup after the two
supercompilations.

6. ACKNOWLEDGMENTS
This work could not have been carried out without support of
Prof. V.F. Turchin. The second author is grateful to the Wuhan
University (China) and Prof. He Keqing for the partial support of
this work. Our thanks to A.P. Konyshev, who supported Refal-5.

7. REFERENCES
[1] Clark J., XT Version 19991105

http://www.jclark.com/xml/xt.html , 1999.

[2] Futamura Y., Nogi K.,Generalized partial computation.,In:
Partial Evaluation and Mixed Computation, Proceedings.
Eds: D. Bjorner. A.P.Ershov and N.D. Jones, North-Holland,
Amsterdam, pp.133-151, 1988.

[3] Futamura Y., Nogi, K. and Takano, A. Essence of
generalized partial computation, Theoretical Computer
Science 90(1991), pp.61-79, North-Holland, Amsterdam.

[4] Johnson M., XML for the Absolute Beginner.
http://www.javaworld.com/javaworld/jw-o4-1999/jw-04-
xml_p.htm , 1999.

[5] Jones N., Sestoft P., Sondergaard H., An experiment in
partial evaluation: the generation of a compiler generator. In:
Rewriting Techniques and Applications, Proceedings. Ed:
Jouannaud J.-P., LNCS vol. 202, pp.153-166, Springer,
1988.

http://www.jclark.com/xml/xt.html
http://www.javaworld.com/javaworld/jw-o4-1999/jw-04-xml_p.htm
http://www.javaworld.com/javaworld/jw-o4-1999/jw-04-xml_p.htm

[6] Jones N.D., Gomard C.K., Sestoft P., Partial Evaluation and
Automatic Program Generation, Prentice Hall International,
June 1993.

[7] Jones N.D., What Not to Do When Writing an Interpreter for
Specialization. In Olivier Danvy, Robert Glück, and Peter
Thiemann, editors, Partial Evaluation, volume 1110 of
Lecture Notes in Computer Science, pages 216-237.
Springer-Verlag, 1996.

[8] Jones N.D., Computability and Complexity from a
Programming Perspective. Foundations of Computing. MIT
Press, Boston, London, 1 edition, 1997. ISBN number 0-
262-10064-9.

[9] Higman G. Ordering by divisibility in abstract algebras,
Proc. London Math. Soc. (3) 2(7) , 1952, pp.326-336.

[10] Karliukou (Korlyukov) A.V., User manual on the
Supercompiler Scp4. (in Russian)
http://www.refal.net/supercom.htm , 1999.

[11] Karliukou (Korlyukov) A.V., Nemytykh A.P. ,
Supercompilation of double interpretation: sources ,
demonstration.
www.refal.net/~korlukov/demo_scp4xslt.zip

[12] Konyshev A.P, The translator from the Refal-graph language
to the language C: sources and demonstration.
http://www.botik.ru/pub/local/scp/refal5/ , 2000.

[13] Kruskal J.B., Well-quasi-ordering, the Tree theorem, and
Vazsonyi's conjecture, Trans. Amer. Math. Society 95, 1960
pp.210-225.

[14] Levin L., Fundamentals of Computing.,
http://www.cs.bu.edu/fac/lnd/toc/ , 1996.

[15] Nemytykh A.P., Pinchuk V.A., Turchin V.F. A Self-
Applicable Supercompiler. Partial Evaluation, Lecture Notes
in Computer Science, 1110 (1996) pp: 232-237.

[16] Nemytykh A.P., Pinchuk V.A., Program Transformation with
Metasystem Transitions: Experiments with a Supercompiler.
In: Perspectives of Systems Informatics, Proceedings. Eds:
D. Bjorner et al., LNCS vol. 1181, pp.249-260, Springer,
1996.

[17] Nemytykh A.P., Turchin V.F.,The Supercompiler Scp4:
sources , on-line demonstration.
http://www.botik.ru/pub/local/scp/refal5/ , 2000.

[18] Nemytykh A.P., Supercompiler Scp4: Use of Quasi-
distributive Laws in Program Transformation. , In:
Proceedings of International Software Engineering
Symposium, Wuhan University Journal of Natural Sciences,
Vol. 6, No. 1-2, pp:375-382, March 2001, Wuhan, China.

[19] Nemytykh A.P., The Supercompiler Scp4: Online
transformations after the folding procedure. (submitted to
Journal of Software, Chinese Academy of Sciences, Beijing,
China), 2001.

[20] Romanenko, S.A. Refal-4 - an extension of Refal-2, in
which the driving can be expressed. , Moscow , M.V.
Keldysh Institute for Applied Mathematics, Russian
Academy of Sciences, preprint #147, Moscow, 1987.

[21] Romanenko, S.A. A compiler generator produced by a self -
applicable specializer can have a surprisingly natural and
understandable structure. In: Partial Evaluation and Mixed
Computation, Proceedings. Eds: D. Bjorner. A.P.Ershov and
N.D. Jones, North-Holland, Amsterdam, pp.445-463, 1988.

[22] Salomaa A., Jewels of Formal Language Theory. Computer
Science Press, 1981.

[23] Turchin V.F., The Language Refal, the Theory of
Compilation and Metasystem Analysis, Courant Computer
Science Report #20, New York University, 1980.

[24] Turchin V.F., The concept of a supercompiler, ACM
Transaction on Programming languages and Systems, 8(3),
pp:292-325, 1986.

[25] Turchin, V. F. The algorithm of generalization in the
supercompiler. Proceedings of the IFIP TC2 Workshop,
Partial Evaluation and Mixed Computation, Amsterdam:
North-Holland Publishing Co., 1988.p. 531-549.

[26] Turchin V.F., Refal-5, Programming Guide & Reference
Manual. Holyoke, Massachusetts: New England Publishing
Co., 1989 (electronic version:
http://www.botik.ru/pub/local/scp/refal5/ , 2000.)

[27] Turchin V.F., Metacomputation in the language Refal.
(unpublished, private communication), 1990.

[28] Turchin V.F. , Nemytykh A.P., Metavariables: Their
implementation and use in Program Transformation,
Technical Report CSc. TR 95-012, City College of the City
University of New York, 1995.

[29] Turchin V.F., Metacomputation: Metasystem Transition plus
Supercompilation. In: Partial Evaluation, Proceedings. Eds:
O. Danvy, R.Glueck and P.Thiemann, LNCS vol 1110,
pp.481-509, Springer, 1996.

[30] Turchin V.F., Supercompilation: Techniques and Results.
Perspectives of System Informatics, LNCS, vol. 1181 (1996)
pp.227-248.

[31] Turchin V.F., Turchin D.F., Konyshev A.P., Nemytykh A.P.,
Refal-5: sources and executable modules.
http://www.botik.ru/pub/local/scp/refal5/ , 2000.

[32] Turchin V.F. Refal: The Language for Processing XML
Documents. http://www.refal.net/english/xmlref_1.htm ,
2000.

[33] XML: http://www.w3.org/TR/1998/REC-xml-19980210 ,
1998

[34] XSL Transformations (XSLT) Version 1.0 W3C.
http://www.w3.org/TR/1999/REC-xslt-19991116 , 1999

http://www.refal.net/supercom.htm
http://www.refal.net/~korlukov/demo_scp4xslt.zip
http://www.botik.ru/pub/local/scp/refal5/
http://www.cs.bu.edu/fac/lnd/toc/
http://www.botik.ru/pub/local/scp/refal5/
http://www.botik.ru/pub/local/scp/refal5/
http://www.botik.ru/pub/local/scp/refal5/
http://www.refal.net/english/
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/1999/REC-xslt-19991116

ATTACHMENT 1

TMNDoublePQ.xsl
<!-- == -->
<!-- TMNDoublePQ.xsl -->
<!-- An interpreter of the Turing Machine. -->
<!-- == -->
<!-- Example of the program for the Turing Machine. -->
<!-- The program replaces an array of the characters P with another array, where each of the Ps was changed with two Qs -->
<!-- (one per cell). If, for instance, in the beginning of the TM's job there are exactly ten of the characters P on the tape -->
<!-- (followed one by another) and the pointer indicates to the first of them, then, when the machine will stop, the tape will -->
<!-- contain twenty Qs followed one by another. The tape's borders are being worked on: the empty cells are added on -->
<!-- the left hand and the right hand of the tape, if that is necessary. -->
<!-- == -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:xt="http://www.jclark.com/xt" version="1.0">

<!-- TMNDoublePQ.xsl
** *
* The interpreter of Turing Machine interprets a concrete Turing Machine. *
* Initially, the concrete machine is put inside a program (i.e. the concrete machine is just a part of this XSLT-program). *
* *
* The instruction has the form: (CurrState CurrSymb NextSymb NextState Move). *
* The instruction is executed if the machine is in the configuration (CurrState CurrSymb). That is to say, its internal state *
* is the CurrState and the symbol scanned under the head is the CurrSymb. The execution consists in overwriting *
* the cell's contents under the head with the symbol NextSymb, in moving the head from the current cell to its adjacent *
* neighbor in the direction indicated by the Move and in changing the internal current state with the NextState. *
* A program consists of a finite number of the instructions. There exists at least one instruction with the start state "start". *
* There can be instructions with the finish state "stop". The program starts with an instruction with the start state. *
* The execution of the program consists in stepwise executing of the instructions. *
* The input to the TM is a finite array of rightward cells. *
** *
-->

<!-- The concrete Turing Machine: replacement of Ps with double Qs on the tape. -->

<!-- *** -->
<!-- The interpreter itself. -->
<!-- *** -->

<xsl:template match="Go">
 <xsl:call-template name="Go2">
 <xsl:with-param name="TMS">
 <TMState>
 <Instruction CurrState="start" CurrSymb="B" NextSymb="B" NextState="stop" Movement="right">
 <Instruction CurrState="start" CurrSymb="Q" NextSymb="Q" NextState="start" Movement="right">
 <Instruction CurrState="start" CurrSymb="P" NextSymb="Q" NextState="moveleft" Movement="left" >
 <Instruction CurrState="moveleft" CurrSymb="Q" NextSymb="Q" NextState="moveleft" Movement="left" >
 <Instruction CurrState="moveleft" CurrSymb="B" NextSymb="Q" NextState="start" Movement="right">
 </Instruction>
 </Instruction>
 </Instruction>
 </Instruction>
 </Instruction>
 <!-- The end of the concrete Turing Machine. -->

 <State>start</State>
 <LeftTape>
 <Nod><Cell>B</Cell><Nod><Cell>B</Cell>
 <Nod><N/></Nod>
 </Nod></Nod>
 </LeftTape>
 <xsl:copy-of select="Symbol"/>
 <xsl:copy-of select="RightTape"/>
 </TMState>
 </xsl:with-param>
 </xsl:call-template>

</xsl:template>

<!-- == -->
<!-- The head template. -->
<!-- == -->

<xsl:template name="Go2">
<xsl:param name="TMS"/>
<xsl:for-each select="xt:node-set($TMS)/TMState">

<xsl:choose>

<xsl:when test="State='stop'">
 <tm>
 <xsl:copy-of select="LeftTape"/>
 <xsl:copy-of select="Symbol"/>
 <xsl:copy-of select="RightTape"/>
 </tm>
</xsl:when>

<xsl:otherwise>
 <xsl:call-template name="Go2">
 <xsl:with-param name="TMS">
 <TMState>
 <xsl:copy-of select="Instruction"/>
 <xsl:call-template name="Step">
 <xsl:with-param name="TMS">
 <TMState>
 <xsl:copy-of select="Instruction"/>
 <xsl:copy-of select="State"/>
 <xsl:copy-of select="LeftTape"/>
 <xsl:copy-of select="Symbol"/>
 <xsl:copy-of select="RightTape"/>
 </TMState>
 </xsl:with-param>
 </xsl:call-template>
 </TMState>
 </xsl:with-param>
 </xsl:call-template>
</xsl:otherwise>

</xsl:choose>
</xsl:for-each>
</xsl:template>

<!-- == -->
<!-- One step of the Turing Machine. -->

<!-- == -->

<xsl:template name="Step">
 <xsl:param name="TMS"/>
<xsl:for-each select="xt:node-set($TMS)/TMState">

<xsl:choose>

<xsl:when test="Instruction/@CurrState=State">
 <xsl:choose>
 <xsl:when test="Instruction/@CurrSymb=Symbol">
 <xsl:choose>
 <xsl:when test="Instruction/@Movement='right'">
 <State>
 <xsl:value-of select="Instruction/@NextState"/>
 </State>
 <LeftTape>
 <Nod>
 <Cell>
 <xsl:value-of select="Instruction/@NextSymb"/>
 </Cell>
 <xsl:copy-of select="LeftTape/Nod"/>
 </Nod>
 </LeftTape>
 <Symbol>
 <xsl:value-of select="RightTape/Nod/Cell"/>
 </Symbol>
 <RightTape>
 <Nod>
 <xsl:for-each select="RightTape/Nod/Nod">
 <xsl:apply-templates/>
 </xsl:for-each>
 </Nod>
 </RightTape>
 </xsl:when>

 <xsl:when test="Instruction/@Movement='left'">
 <State>
 <xsl:value-of select="Instruction/@NextState"/>
 </State>
 <LeftTape>
 <Nod>
 <xsl:for-each select="LeftTape/Nod/Nod">
 <xsl:apply-templates/>
 </xsl:for-each>
 </Nod>
 </LeftTape>
 <Symbol>
 <xsl:value-of select="LeftTape/Nod/Cell"/>
 </Symbol>
 <RightTape>
 <Nod>
 <Cell>
 <xsl:value-of select="Instruction/@NextSymb"/>
 </Cell>
 <xsl:copy-of select="RightTape/Nod"/>
 </Nod>
 </RightTape>
 </xsl:when>
 </xsl:choose>

 </xsl:when>

 <xsl:otherwise>
 <xsl:call-template name="Step">
 <xsl:with-param name="TMS">
 <TMState>
 <xsl:copy-of select="Instruction/Instruction"/>
 <xsl:copy-of select="State"/>
 <xsl:copy-of select="LeftTape"/>
 <xsl:copy-of select="Symbol"/>
 <xsl:copy-of select="RightTape"/>
 </TMState>
 </xsl:with-param>
 </xsl:call-template>
 </xsl:otherwise>
 </xsl:choose>
</xsl:when>

<xsl:otherwise>
 <xsl:call-template name="Step">
 <xsl:with-param name="TMS">
 <TMState>
 <xsl:copy-of select="Instruction/Instruction"/>
 <xsl:copy-of select="State"/>
 <xsl:copy-of select="LeftTape"/>
 <xsl:copy-of select="Symbol"/>
 <xsl:copy-of select="RightTape"/>
 </TMState>
 </xsl:with-param>
 </xsl:call-template>
</xsl:otherwise>

</xsl:choose>
</xsl:for-each>
</xsl:template>

<!-- == -->
<!-- Processing of the end of the tape. -->
<!-- == -->

<xsl:template match="N">
 <Cell>B</Cell>
 <Nod><Cell>B</Cell>
 <Nod><N/>
 </Nod></Nod>
</xsl:template>

<xsl:template match="Nod">
 <xsl:copy-of select="."/>
</xsl:template>

<xsl:template match="Cell">
 <xsl:copy-of select="."/>
</xsl:template>

<!-- *** -->
<!-- The end. -->
<!-- *** -->

</xsl:stylesheet>

TMN.dtd

<!-- == -->
<!-- TMN.dtd -->
<!-- The description of the domains of the programs: TMNPQ.xsl and TMNDoublePQ.xsl. -->
<!-- == -->

<!ELEMENT Go (Symbol, RightTape)>
<!ELEMENT TMState (Instruction, State, LeftTape, Symbol, RightTape) >
<!ELEMENT LeftTape (Nod) >
<!ELEMENT RightTape (Nod) >
<!ELEMENT Nod ((Cell, Nod) | N) >
<!ELEMENT Symbol (#PCDATA) >
<!ELEMENT Cell (#PCDATA) >
<!ELEMENT State (#PCDATA) >
<!ELEMENT N (#PCDATA) >
<!ELEMENT Instruction (Instruction | EMPTY) >
<!ATTLIST Instruction
 CurrState CDATA #IMPLIED
 CurrSymb CDATA #IMPLIED
 NextSymb CDATA #IMPLIED
 NextState CDATA #IMPLIED
 Movement CDATA #IMPLIED >

TMN.xml
<!-- == -->
<!-- TMN.xml -->
<!-- The input tape to the programs: TMNPQ.xsl and TMNDoublePQ.xsl. -->
<!-- == -->

<!DOCTYPE Go SYSTEM "TMN.dtd">

<Go>

<Symbol>P</Symbol>

<RightTape>
<Nod><Cell>P</Cell><Nod><Cell>P</Cell><Nod><Cell>P</Cell>
<Nod><Cell>P</Cell><Nod><Cell>P</Cell><Nod><Cell>P</Cell>
<Nod><Cell>P</Cell>
<Nod><N/></Nod>
</Nod></Nod></Nod></Nod></Nod></Nod></Nod>
</RightTape>

</Go>

The other documents can be found in www.refal.net/~korlukov/demo_scp4xslt.zip .

http://www.refal.net/~korlukov/demo_scp4xslt.zip

