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ABSTRACT 
Supercompilation is a program transformation method that can 
achieve partial evaluation, and in some respect more powerful. In 
this paper, we describe some experiments with the supercompiler 
Scp4. We specialize an XSLT-interpreter w.r.t. a Turing Machine 
interpreter written in XSLT.  The running time speedup observed 
by us is entered in the title of this paper. 

Categories and Subject Descriptors 
D.3.1 [Programming Languages]: Language Constructs and 
Features – formal definitions, control structures.  

F.3.2 [Logic and Meaning of Programs]: Specifying, Verifying 
and Reasoning About Programs. 

General Terms 
Algorithms, Measurement, Performance, Experimentation, 
Languages, Theory. 

Keywords 
Automatic program transformation, Supercompilation, 
Specialization, XML, XSLT, Functional programming languages, 
Refal. 

1. INTRODUCTION 
This paper concerns automatic program transformation with the 
object of running time optimization. We use the supercompiler 
Scp4 (see [17],[18]) as the transformer.  The subjects to be 
transformed with the supercompiler Scp4 are programs written in 
a functional programming language Refal (see [26],[31],[23]), a 
brief introduction to which is given below. The output language 
of Scp4 is Refal as well.  The supercompiling procedure is enough 
good for processing of interpreting algorithms. The aim of our 

work is to demonstrate some abilities of the supercompiler Scp4 
(see [17],[18]). 

The self-applicability of any program transformer is very 
attractive (see [3]).  Here is a step to solve this task (with the 
supercompiler Scp4): we consider an example of the 
supercompilation of a double interpretation. The running time 
speedup observed by us is entered in the title of this paper. 

Let us formulate the task.  We deal with a number of subjects 
relating one to another.  Following after Turchin 
([28],[29],[30],[15]), we denote an abstract functional call with 
the angular brackets; the left angular bracket is followed by the 
function name. 

1. A Turing Machine takes a tape as its argument, let us 
denote that as  <TM  e.tape> 

2. An interpreter IntTM of the Turing Machine written in 
XSLT ([33],[34]) takes an XML document (“written on 
the tape”) and a DTD ([33],[4]) as its arguments, let us 
denote that as  <IntTM (e.DTD) (e.XML)> or in more 
details:  

<IntTM (e.DTD)        e.tape      > 
                    <TM   !    >  

We carried the call to a concrete Turing Machine over 
to the next line below to emphasize that the subject to 
be transformed by the interpreter is this call itself rather 
then its value. The exclamation mark stresses the 
semantics of the tape: the tape is processed by the 
concrete Turing Machine, even though indirectly by 
way of the interpreter of the Turing Machine; a concrete 
Turing Machine is able to process an arbitrary concrete 
tape. 
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3. Let IntXSLT be an interpreter of an algorithmically 
universal subset of the language XSLT (see the section 
No. 4 below) written in Refal (see the subsection No. 
2).  It takes an XSLT-program, an XML-document, a 
DTD-definition as its inputs, let us denote that as  

<IntXSLT  (e.XSLT) (e.DTD) (e.XML)> 

or in more details: 

<IntXSLT    e.DTD e.tape    > 
           <IntTM (   !          ) !       > 
                           <TM !   > 

 

4. Let us formulate a task for specialization (by the 
supercompiler Scp4) of the interpreter IntXSLT with 
respect to the interpreter IntTM, which, in its turn, 
performs the concrete Turing Machine TM.  The tape of 
the Turing Machine is defined as an XML-document, 
which, before to be transformed, is syntactically 
checked with a validator DTD ([33]). Let us denote that 
as 

<SCP4   >
          <IntXSLT  e.tape       > 
                  <IntTM <DTD    !        > > 
                                                        <TM   ! > 

The DTD-description is used as a filter by us (that is to 
say, a recursive dynamic typing with means of the 
language Refal) for the input XML-documents.  

Thus in this example the supercompiler deals with the five 
subjects mentioned above. If the following task will be formulated 
for the supercompiler                                                                                                  

 
<IntXSLT   e.TM  e.tape  > 
                <IntTM <DTD     !        !  >> 
                            <  !       !      >  

   Figure 1.  
then the output of the supercompiler will an interpreter of the 
Turing Machine written in Refal. It is a substantially interesting 
question about the running time efficiency of this result program-
interpreter.  It is also interesting to investigate the structure of the 
obtained program. 

 

While formulation of the scheme 

   <IntXSLT e.tape         > 
 <IntTM <DTD   !  >> 
                                 <TM   ! > 

Figure 2. 

provides a concrete Refal-program. For example, the program 
TMDoublePQ doubling characters P and replacing them with Qs, 
or the program TMPQ replacing Ps with Qs. 

1.1 The language Refal 
The programming language Refal (by V.F. Turchin) is a first-
order functional language with an applicative (inside-out) 

semantics. Roughly speaking, a program in Refal is a term 
rewriting system. The semantics of Refal is based on pattern-
matching. As usually, the rewriting rules are ordered to match 
from the top to the bottom. The terms are generated with two 
constructors. The first is the concatenation. It is binary, 
associative and is used in infix notation, which allows us to drop 
its parenthesis. In Refal the blank is used to denote the 
concatenation. The second constructor is unary. It is syntactically 
denoted with just its parenthesis (that is without a name). Angular 
brackets are used to denote a function call. Its name is put after 
the left bracket. Every function is unary. In Refal the ground terms 
are referred to as expressions. Empty sequence is a special basic 
ground term. This term is denoted with nothing and called  
"empty expression". It is neutral element (both left and right) of 
the concatenation. All other basic ground terms are named as 
"symbols". There exist three types of basic non-ground terms 
(called variables) - e.name, s.name and t.name.  An e-variable can 
take any expression as its value, an s-variable can take any symbol 
as its value, a t-variable -- any symbol and any expression 
enclosed with the parenthesis. The associativity of the 
concatenation causes the set of Refal terms to be more expressive 
than the set of Lisp terms. 

Example: 

$ENTRY Go { 
= <Search  (Valentin Turchin) 
  ((Alanzo Church Lambda-calculus) 
   (Andrei Markov Markov-algorithm) (John McCarthy Lisp) 
   (Emil Post Post-system) (Guy Steel Scheme) 
   (Valentin Turchin Refal)  (Alan Turing Turing-machine)) 
   >; 
} 

 

Search { 
   (s.key1 s.key2) ((s.key1 s.key2 e.value) e.table) = (e.value); 
   (s.key1 s.key2) ((e.row) e.table) 
 = <Search (s.key1 s.key2) (e.table)>; 
} 

The result of the program is the following Refal-expression: 
(Refal). On the left hand side of the function Go we see the empty 
expression. The right side of the function Go, the left side of the 
first sentence and the both sides of the second sentence of the 
function Search show the associativity of the concatenation.  

A detailed description of the language is available in an electronic 
format ([26]). 

All residual programs from our paper were constructed 
automatically by Scp4 and modified by hand-formatting only.  

2. TURING MACHINE 
In the theory of algorithms the concept of Turing Machine  (TM) 
is broadly used as a precise equivalent of our intuitive idea of an 
algorithm (see, for example, [14]). The memory of a TM, called 
tape, is an infinite chain of cells (in the both sides) with two 
adjacent neighbors each. A program for the TM is a finite 
sequence of instructions. Each instruction has the form:  

CurrState   CurrSymb   NextSymb   NextState   Movement 



Accordingly to the program, a pointer is being moved from one 
cell to its adjacent neighbor by the TM, this cell’s content is 
changed as well as the current state of the machine. The start state 
is called 'start' and the final is called 'stop'. The input to the TM is 
a finite array of rightward cells following blanks and followed by 
blanks (denote the blank with B). 

Consider an example of a program for the TM. The program 
DoublePQ replaces an array of the characters P with another 
array, where each of the Ps was changed with two Qs (one per 
cell). If, for instance, in the beginning of the TM's job there are 
exactly ten Ps on the tape (followed one by another) and the 
pointer indicates to the first of them, then, when the machine will 
stop, the tape will contain twenty Qs followed one after another. 

Table 1. The program DoublePQ 

CurrState start start Start moveleft moveleft 
CurrSymb B Q P Q B 
NextSymb B Q Q Q Q 
NextState stop start moveleft moveleft Start 
Movement right right Left left right 

As a first experiment we supercompile an interpreter of the TM. 
The interpreter is written in Refal-5 (see [26],[31]): 

Table 2. Interpreter of the Turing Machine written in Refal 
* Call for a concrete Turing machine ( a program ).              
$ENTRY Go { 
 (e.LeftTape) (s.CurrSymb) (e.RightTape) = 
   <Turing ( 
    (start          B B stop       right) 
    (start          Q Q start      right) 
    (start          P Q moveleft  left ) 
    (moveleft   Q Q moveleft   left ) 
    (moveleft   B Q start  right) ) 
   (start)  (e.LeftTape) (s.CurrSymb) (e.RightTape) >; 
 } 
 
* The interpreter itself.  
* <Turing (e.Program) (s.CurrState)(e.LeftPartOfTape)                
*  (s.CurrSymb)(e.RightPartOfTape)> 
Turing  { 
  (e.instr) (stop) (e.left) (s.symbol) (e.right)  
              = (e.left) (s.symbol) (e.right) ; 
 
  (e.instr) (s.q) (e.left) (s.symbol) (e.right)   
              = <Turing (e.instr) <Turing1  
                                                 <Search (s.q s.symbol) (e.instr)> 
                                                  (e.left) (s.symbol) (e.right)>  >; 
 } 
 
Turing1   { 
 (s.c s.r left) ( ) (s.symbol) (e.right) = (s.r) ( ) (B) (s.c e.right) ; 
 (s.c s.r left) (e.left s.a) (s.symbol) (e.right)  
                         = (s.r) (e.left) (s.a) (s.c e.right) ; 
 (s.c s.r right) (e.left) (s.symbol) ( ) = (s.r) (e.left s.c) (B) ( ) ; 
 (s.c s.r right) (e.left) (s.symbol) (s.a e.right)  
                         = (s.r) (e.left s.c) (s.a) (e.right) ; 
 } 

Where the definition of the function Search can be found in the 
Introduction. 

 
The entry point Go has fixed a context to specialize this 
interpreter Turing w.r.t. the given TM. The result of the 
supercomilation is the following program: 
 

Table 3. The program DoublePQ translated into Refal 
* InputFormat:    <Go (e.LeftTape)(s.CurrSymb) (e.RightTape)>  
$ENTRY Go { 
 (e.Left) (s.Symbol) (e.Right) = <F6 (e.Left) s.Symbol e.Right> ; 
} 
 
F59 { 
 ()  () Q = (Q Q Q B) (B) () ; 
 ()  (s.3 e.4) Q = <F6 (Q Q Q) s.3 e.4 > ; 
 (e.1 s.5)   (e.4) Q = <F59 (e.1) (Q e.4) s.5 > ; 
 (e.1)  () B = (e.1 Q Q B) (B) () ; 
 (e.1)  (s.3 e.4) B = <F6 (e.1 Q Q) s.3 e.4 > ; 
} 
 
F6 { 
 (e.1)  B  = (e.1 B) (B) () ; 
 (e.1)  B s.5 e.4 = (e.1 B) (s.5) (e.4) ; 
 (e.1)  Q  = (e.1 Q B) (B) () ; 
 (e.1)  Q s.5 e.4 = <F6 (e.1 Q) s.5 e.4 > ; 
 ()  P  = (Q Q B) (B) () ; 
 ()  P s.5 e.4 = <F6 (Q Q) s.5 e.4 > ; 
 (e.1 s.6)  P e.4 = <F59 (e.1) (e.4) s.6 > ; 
} 

For our experiment, to see the speedup, we input 512 Ps to the 
given TM. 

The supercompiler Scp4 transforms programs in the dialect Refal-
5  ([26],[31]). This paper deals just with a fragment of the dialect, 
called strict Refal, in which: 1) open e-variables and repeated t- 
and e-variables are not allowed in the patterns ([26]); 2) the left 
side of each sentence is a pattern.  Evaluation of a strict Refal-
program can be seen as a sequence of elementary actions called 
Refal-steps ([26]). Running time of a Refal-step, generally 
speaking, is not uniformly bounded on input data. A concrete 
display of this non-bounding depends on a given implementation 
of the Refal Machine. Everywhere below, we mean the strict Refal 
and a fixed release of Refal-5  ([31]). Under these conditions, 
running time of one Refal-step, corresponding to a Refal sentence, 
is uniformly bounded if the sentence does not contain repeated 
occurrences of t- and e-variable in its right side.  The inverse 
statement is not correct. Running time of every step of the 
program from [Table 2] is uniformly bounded on input data, but if 
the function Turing will be declared as the program entry point, 
then steps corresponding to the second sentence of this function 
have not such property. 

The original program takes 2 634 778 Refal-steps (15.242 
seconds) for running, the result of the supercompilation takes 525 
319 Refal-steps (2.053 seconds). Thus, the Refal-step speedup 
StepSpeedup is 5.016 and the run-time speedup TimeSpeedup is 
7.388 (for this example and this input data). All our experiments 
were performed under the operating system Windows2000 with 
Intel Pentium-3 CPU, 262 144 KB RAM, 500 MHz. 



Consider the residual program. Many sentences handle the 
borders of the tape (where the blanks are starting). With the 
theoretical point of view, the tape is infinite in the both sides, but 
practically it is finite, and we can either add the empty cells by 
need or assume that always there exist enough many of the empty 
cells. In the second case all programs look shorter. Further we 
consider namely this simpler case and note what happens in the 
general case.  

Let us remove the first and the second sentences in the definition 
of Turing1 (from the original program), then after the 
supercompilation we have the following program, which is easier 
to be followed: 

Table 4. The simpler residual program DoublePQ (in Refal) 
* InputFormat:  <Go (e.LeftTape)(s.CurrSymb) (e.RightTape)>  
$ENTRY Go { 
 (e.Left) (s.Symbol) (e.Right)  = <F6 (e.Left) s.Symbol e.Right > ; 
} 
 
F27 { 
 (e.1 s.2)    (e.4) Q = <F27 (e.1) (Q e.4) s.2 > ; 
 (e.1)  (s.3 e.4) B = <F6 (e.1 Q Q) s.3 e.4 > ; 
} 
 
F6 { 
 (e.1)  B s.3 e.4 = (e.1 B) (s.3) (e.4) ; 
 (e.1)  Q s.3 e.4 = <F6 (e.1 Q) s.3 e.4 > ; 
 (e.1 s.2)   P       e.4 = <F27 (e.1) (e.4) s.2 > ; 
} 
 
The things became clear: the function F6 corresponds to the inner 
state start, while the function F27 corresponds to the inner state 
moveleft.  Each sentence corresponds to one instruction of the 
TM. The number of the Refal-steps is equal to the number of the 
TM's steps. The residual program contains no the terms: start, 
moveleft, stop. That output of the supercompiler is an optimal 
Refal-program, i.e. a compilation of the program for the TM 
([Table 1]) into a Refal-program ([Table 4]) took place. Here, 
under the "optimalness" we mean an optimalness within the limits 
of the input algorithm defined with the original program: no 
remarkable changes of this algorithm (in its essence) have 
happened. 

3. THE DECLARATIVE LANGUAGE XSLT 
FOR TRANSFORMING DOCUMENTS: 
EXPERIMENTS WITH THE 
SUPERCOMPILER SCP4 
3.1 The Languages XML, DTD, XSLT 
XML describes a class of data objects called XML documents and 

partially describes the behavior of computer programs which 
process them (see [33],[32]). XSLT is designed to describe 
transformations of the XML documents [34]. The pair (XSLT, 
XML) is a programming language. This language requires typing 
of the data: the domain of a given program is being described in 
the language DTD [33]. 

From point of view of supercompilation, the given language 
seems an interesting object through the following reasons. On the 
one hand, this is a real language for transforming the internet-
documents, which, eventually, will be broadly disseminated. On 
the other hand, data of this language is very similar to Refal-data. 
At last, the language XSLT for transforming of the documents is 
enough poor in its expressive means and stimulates users to 
develop programs passing the only time along the data (that is to 
say, once transformed part of the data is not available for further 
processings). The last circumstance simplifies the supercompiling 
procedure, and provides possibility for obtaining more efficient 
(in running time) residual programs.  

Stress the previous remark is also true for a program 
transformation technique called specialization [5],[6]. The 
customary separation of data on static and dynamic ones (known 
and unknown in transforming time) (see [6],[7],[21]), from a 
point of view of the transforming procedure, could be made more 
accurate: on static, dynamic ones being single-passed, dynamic 
ones being twice-passed and so on. Interesting transformation of 
the algorithms (in "essence") can be achieved only by tools for 
analyzing and transforming the poly-processing of the data. The 
supercompiler Scp4 has a number of such simple tools (see [18]). 

The below-considered interpreter of a TM, certainly, has the poly-
processing tape. Refal-5 is the input and the output language for 
the supercompiler Scp4. Therefore, XSLT-programs are 
transformed indirectly through an interpreter of XSLT written in 
Refal-5. And, hence, on the output we obtain a program written in 
Refal-5 as well. 

Finally, we note the tools analyzing the poly-processing make 
possibilities for dynamic typing of the data in supercompile-time. 
This information can lead to some additional transformations. The 
requirement to describe the domain of an XSLT-program (by 
means of DTD) makes such typing natural.  

The language DTD represents an extended variant of the language 
of the regular expressions [22],[33].  

3.2 The Regular Expressions  
XML provides a mechanism, the document type declaration 
(DTD), to define constraints on the logical structure and to 
support the use of predefined storage units. An XML document is 
valid if it has an associated document type declaration and if the 
document complies with the constraints expressed in it. An XSLT 
transformer uses the declarations for checking documents. We 
implemented the following variant of the language DTD. (The 
double “or”-sign  || is a meta-symbol, while the single | is just a 
regular character.) 

Table 5. Variant of the language DTD 
ElementDec ::= <!ELEMENT Name ContentSpec > 
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ContentSpec  ::= EMPTY || Children* 
Children ::= Choice || Seq 
Choice ::= (Cp OrCp* ) 
Seq      ::= (Cp AndCp* ) 
Cp       ::= #PCDATA || CpAlt* 
CpAlt  ::= Name || Choice || Seq 
OrCp  ::= |Cp 
AndCp  ::= ,Cp 
 
AttlistDecl ::= <!ATTLIST Name AttDef* > 
AttlistDecl -- can be encountered just one time. 
AttDef ::= Name AttType DefaultDecl 
AttType ::= CDATA 
DefaultDecl ::= #IMPLIED || IgnoredDecl 
IgnoredDecl – Any declaration. That is interpreted as #IMPLIED. 
 
EntityDecl ::= <!ENTITY % Name EntityValue > 
EntityValue  ::= Dquote PEReference* Dquote 
    || Quote PEReference* Quote 
Dquote :: = " 
Quote :: = ' 
PEReference ::= %Name ; 

For the undefined conceptions we refer the reader to the 
specifications of the language DTD (see [33]). We use the 
following DTD defining the structure of the tape and programs for 
the below-defined TM written in XSLT. 

Table 6. Document type declaration for the TM 
<!ELEMENT Go (Instruction, State, LeftTape, Symbol,  
 RightTape)> 
<!ELEMENT LeftTape  (Nod) > 
<!ELEMENT RightTape (Nod) > 
<!ELEMENT Nod ((Cell, Nod) | Cell) > 
<!ELEMENT Symbol    (#PCDATA) > 
<!ELEMENT Cell      (#PCDATA) > 
<!ELEMENT State     (#PCDATA) > 
<!ELEMENT Instruction (Instruction | EMPTY) > 
<!ATTLIST Instruction 
 CurrState CDATA #IMPLIED 
 CurrSymb CDATA #IMPLIED 
 NextSymb CDATA #IMPLIED 
 NextState CDATA #IMPLIED 
 Movement CDATA #IMPLIED > 

 Here Instruction is a sequence of the instructions for a concrete 
TM, State is a current inner state, LeftTape is the left part of the 
tape followed by the current cell, Symbol denotes a symbol 
written in the current cell, RightTape denotes the right part of the 
tape.  

It is naturally to define a tape for a TM just as a sequence of the 
cells (Cells). We refused such representation by the following two 
reasons. By definition, all TM's actions take place locally around 
a current cell. The language XSLT does not provide a simple 
possibility to rewrite a tail of the tape; one is forced to rewrite the 
tail by symbol-wise, that leads to inefficiency. This is one of the 
reasons why we write out (in the XML-document) one symbol 
and a reference to the tail. The second reason is, by the essence of 
the interpretation, it is frequently necessary to compare contents 

of the cells from different places. The instruction <xsl:for-each  . 
. . > moves us inside a sub-tree and the other parts of the whole 
tree become either unavailable or available with a complicated 
way. By the same reasons, the TM's instructions are written out 
analogically.  

Above we mentioned the DTD is used for checking of the logical 
structure of the input XML-document. On the other hand, this 
knowledge can help to develop more efficient programs. In one-
level programming (without usage of a program transformer), it is 
not in the least obviously and simply to use this information for 
decreasing of running time of an algorithm. It is a paradox, but the 
supercompiler is able to implement that easy and simple.  That is 
caused with that the supercompiler successfully processes 
composition of functions and, by definition, uses its own 
discretion to extend domains of the partial functions. We use a 
program-filter, which is the identity partial function on the 
documents corresponding to a given DTD and forcing an 
abnormal stop of the machine on the other documents. 

3.3 An Interpreter of a Fragment of XSLT 
Written in Refal and Supercompilation of It  
This paper concerns supercompilation of double interpretation, 
i.e. when one interpreter interprets another interpreter interpreting 
a given program. In this section we consider the first interpreter, 
the second will be considered in the following section.       

An interpreter VT.ref (see [11]) of a fragment of XSLT was 
written in the language Refal-5 [26],[31]. The aim of our work is 
a demonstration of the possibility of the program transformer 
Scp4 [17],[18] to work as a compiler from some language into 
Refal-5 (see [1],[3]) and to generate an efficient program in Refal-
5. The speedup  of the generated program w.r.t. interpretation of 
its pro-image is quite remarkable.  

The interpreter VT.ref accepts (as its input) programs in a small 
fragment of XSLT closed with the following syntactic 
constructions  

Table 7. Fragment of the language XSLT. 
<xsl:apply-templates  select = qexpression > 
</xsl:apply-templates> 
<xsl:call-template   name = NAME> 
  <!-- Content: xsl:with-param? --> 
</xsl:call-template> 
<xsl:with-param name = NAME >  <!-- Content: template --> 
</xsl:with-param> 
<xsl:choose>  <!-- Content: (xsl:when+, xsl:otherwise?) --> 
</xsl:choose> 
<xsl:when   test = boolean-expression> <!-- Content: template -->
</xsl:when> 
<xsl:otherwise>  <!-- Content: template --> </xsl:otherwise> 
<xsl:copy-of select = qexpression /> 
<xsl:element name = NAME >  <!—Content: template --> 
</xsl:element> 
<xsl:attribute name = NAME >  <!-- Content: template --> 
</xsl:attribute> 
<xsl:for-each   select = qexpression>  <!-- Content: template --> 
</xsl:for-each> 
<xsl:if   test = boolean-expression>  <!-- Content: template --> 
</xsl:if> 



<xsl:param   name = NAME > </xsl:param> 
<xsl:text >  <!-- Content: #PCDATA --> </xsl:text> 
<xsl:value-of select = qexpression /> 
 
qexpression ::= dquote expression dquote 
expression ::= expr || expr / expression || quote char-string quote 
expr ::=  xt:built-in( expr ) ||  $Name || @Name ||  dot 
built-in ::= node-set 
dquote ::= " 
quote ::= ' 
dot ::= . 
Name ::= NAME 
qboolean-expression ::= dquote boolean-expression dquote 
boolean-expression ::= expression Boolean-operator expression 
boolean-operator ::= = || != 
 
For the undefined conceptions we refer the reader to the 
specifications of XSLT (see [34]).  Our main aim is demonstration 
of Scp4, but not a literal implementation of XSLT.  

The built-in function xt:node-set was implemented to provide 
algorithmic universality to the fragment of XSLT. It is impossible 
to define repeated transformations of the XML-data by the XSLT-
program, if this built-in function is not used. That is the main 
reason why the language XSLT is becoming an admirable 
practical object for supercompilation. Namely, that makes easy to 
specialize the interpreter w.r.t. a given program, when the given 
program does not contain a call of xt:node-set (see [1]). 
Emphasize, this property also is very meaningful for partial 
evaluators [5],[6],[7],[21]. 

3.4 An Interpreter of the Turing Machine in 
the Language XSLT 
While the interpreter VT.ref ([11]) defines the semantics of the 
considered fragment of XSLT in terms of the language Refal, the 
second interpreter considered in this section is an interpreter of 
the Turing Machine written in the fragment of XSLT.   

The existence of such interpreter of the Turing Machine proves 
the algorithmic universality of the chosen subset of XSLT.  The 
sources of the interpreter are available for immediate download 
(see [11]). 

The following documents were created for our 
comparative experiments: 

•  TM.dtd - the description of the domains of the programs 
TM.xsl , TMPQ.xsl and TMDoublePQ.xsl, 

•  TM.xml – the input data for the programs TM.xsl , 
TMPQ.xsl and TMDoublePQ.xsl, 

•  TM.xsl - the interpreter of the Turing Machine, which 
does not take care of the tape’s borders. The 
experiments (supercompilation) were done for the 
concrete TM (the program to be evaluated with this 
interpreter) from the example DoublePQ [Table 1], 

•  TMPQ.xsl - a variant of the previous program, which 
evaluates a given TM for replacement all the characters 
P with the Qs. 

•  TMDoublePQ.xsl - a variant of the program TM.xsl 
evaluating a given TM for doubling of the characters P 
and replacing them with the Qs. 

•  TMN.dtd - the description of the domains of the 
programs TMNPQ.xsl and TMNDoublePQ.xsl, 

•  TMN.xml – the input data to the programs TMNPQ.xsl 
and TMNDoublePQ.xsl, 

•  TMNPQ.xsl, TMNDoublePQ.xsl - variants of 
TMPQ.xsl, TMDoublePQ.xsl , where the tape’s borders 
are being worked on: the empty cells are added on the 
left hand and the right hand of the tape, if that is 
necessary. 

These documents are available for immediate download (see [11]) 
and some of them can be found in the attachment No. 1. 

3.5 The Experiments with Supercompilation 
of Double Interpretation 
3.5.1 On adequate mapping of results of 
supercompilation 
Before considering of the results of the experiments, it is 
necessary to say that the real internal language defining programs 
to be transformed by the supercompiler SCP4 is not the language 
Refal-5. But it is a Refal-graph language (see [24],[23],[18]), in 
which the steps of the Refal Machine are decomposed into more 
elementary actions and the pattern-matching takes into account 
not the only pattern from the left-side of the Refal-sentence, but, 
in a sense, all the left sides from the Refal-definition  
"simultaneously". I.e. in the Refal-graph language we can describe 
the process of pattern-matching as a non-trivial tree, where the 
failures during the pattern-matching backtrack us to the closest 
branching. In this sense, the branchings are "functional", i.e. they 
behave like the Refal-5 functions, the failure inside of which leads 
to an abnormal stop. Here one can refer to a rough analogy with 
the blocks in Refal-5 (see [26]). 

SCP4 translates a program into the Refal-graph language, and 
only after that it starts the transforming. When the residual Refal-
graph program is ready, then SCP4  translates it in a Refal-
program. From point of view of a user, Refal-5 is the input (as 
well as the output) language for this supercompiler.  

A program in the Refal-graph language often contains simple 
syntactic information, which allows optimization of the process of 
interpreting, if this process is running directly. Refal-5 does not 
contain some of such syntactic entities.  That can be lead to a non-
adequate translation (in Refal-5) of the results of the 
transformations with SCP4 [20]. Therefore, from a practical point 
of view, the direct interpretation of the Refal-graph language 
makes meaningful interest (we would like to point to the work by 
A.P. Konyshev [12]) 



3.5.2 The testing and the time analysis 
We collected the running times and running steps of the examples 
described in the previous section in two tables. In each of the 
examples the number of the non-empty cells on the TM's tape is 
equal to 16. Such choice was motivated by the proportion of the 
times, which takes place: that is hours and seconds. Else either 
one of the times is huge or the other is very little. The first 
columns stay for the names of the examples. The second columns 
show information about the running of the original interpreter 
VT.ref  (of the subset of XSLT), while the third columns are 
responsible for residual programs after the repeated 
supercompilation. The names of the columns are clear. The 
number TimeSpeedup (it is a quotient of the contents from the 
second column by the third one) is not indicated, if dividing by 
zero happens.  

Table 8. Step speedup  
 Original 

prg. 
Residual 
prg. 

StepSpeedup 

TM 1960210 3195 613 
TMPQ 48789 40 1219 
TMDoublePQ 1960475 519 3777 
TMNPQ 49512 58 853 
TMNDoublePQ 1988750 1018 1953 
 

Table 9. Time speedup (seconds) 
 Original 

prg. 
Residual 
prg. 

TimeSpeedup 

TM 14.741  0.070 210 
TMPQ 0.350 0.000 -------------- 
TMDoublePQ 14.761 0.000 -------------- 
TMNPQ 0.300 0.000 -------------- 
TMNDoublePQ 13.830 0.020 691 

Let us make some explanations to the tables.  

Consider the third column in [Table 8]. The residual replacement 
of 16 characters P with 16 characters Q takes 40 Refal-steps, 
when the tape borders are not taken into account, and that takes 
58 ones, when the borders are treated. Here the number of Refal-
steps is grater than the expected 16, because a non-adequate 
translation of the program from the Refal-graph language in 
Refal-5 (see the section 2.5.1) and the representation of the 
character's sequence as a tree structure. The residual doubling of 
16 characters P takes 519 Refal-steps, when the tape borders are 
not taken into account, and that takes 1018 steps, when the 
borders are treated (the number of the actions grows like 2*n^2). 
During the interpretation this example takes 3195 Refal-steps; the 
reason is the looking for a needful TM's instruction each time. 
These numbers are quite clear: they demonstrate that seriously 
transformations happened during the supercompilation.  

Consider the second column in [Table 8]. The numbers from it are 
grater: that is normal, because the interpreting of the interpreter. 
The growth of the number of the elementary actions (w.r.t. single 
interpretation) could be roughly viewed as "squaring". 

The small numbers for the residual programs causes the very big 
StepSpeedup. That is expected because the properties of the 

XSLT-programs from our examples. The coefficient TimeSpeedup 
cannot be seen as a reflection of the real world: too big and too 
small times are not believable, they are just some properties of the 
hardware, the RAM's configuration determined with the external 
software environment and so on. 

We have tried indirectly to determine the time speedup obtained 
by the two supercompilations (the one after the other) of the 
double interpretation. The problem to determinate this coefficient 
is caused by either the memory limit (swapping takes place) 
during the original interpretation (before supercompilation) or the 
zero-time of running of the residual program. The question is 
really interesting, because the very big step speedup still does not 
mean a similar time speedup. While all the TM's steps are uniform 
and their running time is approximately the same, then running 
time of the Refal-steps can be dispersed along a large scale.  

The result of our thinking is the time speedup is equal to the step 
speedup (approximately). 

Consider the third row TMDoublePQ from the table  [Table 8], 
where the step speedup is equal to 3777. Let us increase the 
number of Ps on the tape: namely, write two Ps on the tape, after 
that write four Ps and so on, each time doubling of this number. 
By the sense of the algorithm, the depending of the steps on the 
number of Ps looks like the square, i.e. the doubling of the Ps   
has to cause multiplication of the steps by four. Our experimental 
observation showed the same effect, while swapping (during the 
original interpretation) did not happen. Further we were launching 
only the residual programs while their running time became 
comparable with one second.  Elementary arithmetical operations 
show that the number StepSpeedup non-remarkable differs from 
the number TimeSpeedup.  

To be height-lighted:  the time speedup TimeSpeedup turns one 
hour to one second.   

As an example we consider the residual Refal-program, which is a 
result of supercompilation of TMDoublePQ. 

Table 10. The result of supercompilation of TMDoublePQ  
$ENTRY Go { 
 ((Instruction e.2) e.0) ((State) e.4) 
 ((LeftTape) e.6) ((Symbol) s.8) 
 ((RightTape) e.7) e.1  = <F16 (e.6) (e.7) s.8>; 
 } 
 
F69 { 
 (((Nod) ((Cell) Q) ((Nod) e.7) e.5) e.6) ((Nod) e.4) e.1 
  = <F69 (((Nod) e.7)) ((Nod) ((Cell) Q) ((Nod) e.4))>; 
                            
 (((Nod) ((Cell) B) ((Nod) e.7) e.5) e.6) ((Nod) ((Cell) s.8)) e.1 
  = <F16 (((Nod) ((Cell) Q) ((Nod) ((Cell) Q)  
                                             ((Nod) e.7)))) ( ) s.8>; 
                                  
 (((Nod) ((Cell) B) ((Nod) e.7) e.5) e.6) 
 ((Nod) ((Cell) s.8) ((Nod) e.9) e.4) e.1 
  = <F16 (((Nod) ((Cell) Q) ((Nod) ((Cell) Q) ((Nod) e.7)))) 
               (((Nod) e.9)) s.8>; 
 } 
 



F16 { 
 (((Nod) e.5) e.6) (((Nod) ((Cell) s.9))) B 
   = ((tm) ((LeftTape) ((Nod) ((Cell) B ) ((Nod) e.5))) 
           ((Symbol) s.9) ((RightTape))); 
              
 (((Nod) e.5) e.6) (((Nod) ((Cell) s.9) ((Nod) e.2) e.3) e.1) B 
   = ((tm) ((LeftTape) ((Nod) ((Cell) B) ((Nod) e.5))) 
           ((Symbol) s.9) ((RightTape) ((Nod) e.2))); 
             
 (((Nod) e.5) e.6) (((Nod) ((Cell) s.9))) Q 
   = <F16 (((Nod) ((Cell) Q) ((Nod) e.5))) ( ) s.9>; 
    
 (((Nod) e.5) e.6) (((Nod) ((Cell) s.9) ((Nod) e.2) e.3) e.1) Q 
   = <F16 (((Nod) ((Cell) Q) ((Nod) e.5))) (((Nod) e.2)) s.9>; 
           
 (e.6) (e.1) P = <F69 (e.6) e.1>; 
 } 

Note that the XSLT-construction  <tag . . . > . . . </tag> is 
encoded as  ((tag . . . ) . . . ) in the Refal-data by the parser. 

That residual program is perfect: it contains no redundancies. The 
two functions F69 and F16 correspond to the internal states of the 
given program for the Turing Machine. The number of the Refal-
steps of the residual program does not differ from the number of 
the steps of the input TM. The terminology defining the 
conceptions of the XSLT-interpreter has vanished at all. 
Moreover, the terminology, defining the conceptions of the TM-
interpreter written in XSLT, has vanished at all. Running times 
of the all Refal-steps are uniformly bounded on input data. All 
recursions in the residual program are "tail"-recursions, i.e. (in the 
essence) there exist no recursive calls but only transformation of 
their arguments. One can translate this SCP4's result in a low-
level language enough efficiently:  all the function calls can be 
formed into jumps to labels: no stack's operations are needed (see, 
for example,[12]).  

We would like once more to call the reader for paying attention to 
this residual program. This program clearly demonstrates our 
main result. We input (to the supercompiler SCP4) an interpreter 
of an algorithmically universal language, which has to interpret 
another interpreter of another algorithmically universal language, 
which in its turn has to interpret a simple program. After that we 
input the SCP4's output again to the supercompiler. The 
supercompiler SCP4 (by these two running) cleaned this double 
interpretation and constructed an algorithm in Refal substantially 
coinciding with the algorithm written in the TM-language.  

The large names of the structures describing the TM's tape cause a 
little increasing of the length of this program w.r.t. the analogical 
program from the section 2. 

4. SYNTACTIC ANALYSIS 
The size of this paper does not allow make a precise syntactic 
analysis of the objective programs from our experiments: these 
programs are large. The sources of all these programs partially are 
given in the text of this paper and in the attachment No. 1, their 
complete versions are available by the internet (see [11]). 
Furthermore, from our point of view, it is more usable that one 
regards to a program transformer as an enough complicated 
physical system (rather than a mathematical abstraction). Such 

approach, on the one hand, allows predict behavior of the system 
on the level of the ideas, disregarding some of its properties ("a 
frictional force") and throwing away irrelevant technical details; 
on the other hand, it assumes that the system is living and is being 
developed, so understanding of its new properties can be possible 
just after specification of a concrete its model being considered 
("a frictional force depends only on the properties of the surfaces 
contacting one with the other, but does not depend on the speed of 
the slipping"). Uncomputability of more or less serious problems 
of the automatic program transformation, approximation of these 
problems, apparently, make any attempt of complete formalization 
of the transformation non-perspective, but nevertheless such 
investigations are interesting. 

The most complicate "physical" characteristics of our instrument 
for experimentation (SCP4) are the algorithms of:  the 
generalization, the structuring of the function stack [25], the 
condition for folding of the driving tree and the order for passing 
along the driving tree [17], [27], [18]. It is technically difficult to 
follow behavior of the composition of the indicated characteristics 
with other tools of the transformations. 

4.1.1 The semi-compositionality 
Following after N. D. Jones [7], we have to relate our interpreter 
VT.ref to the semi-compositional ones. The classification of the 
parameters into syntactic and non-syntactic (see [7]) took place 
automatically during the supercompiling process: the 
indispensable condition for a simplifying ordering (see [9],[13]) 
to fold of the driving tree did not allow to lose the information 
about the static nature of the syntactic parameters, because during 
the interpretation the length of the syntactic structures of the being 
interpreted XSLT-program monotonously decreases within one 
logical step of the XSLT-Machine, and the XSLT-program is 
being restored in the beginning of each XSLT-step. It is necessary 
to emphasize that the indicated classification took place 
automatically (on-line) with one of the general tools of 
supercompilation; it happened logically -- the supercompiler 
SCP4 has not a special conception of a "syntactic parameter"  (in 
the considered context). 

 Let us denote as  <FunctionName ... >  an abstract function call 
in a meta-language, which allows reasonings ([28]) about the 
whole set of the programming languages. Here, the word 
"function" is used enough broadly and a corresponding 
conception can be called (in a concrete language) some other 
word  (for instance, in XSLT it is  "template"), but the 
"function" always reflects an input point into a syntactic loop. 

The Refal-syntax of the XSLT-interpreter (that is a property of 
our interpreter) fixes an injective mapping of the function stack's 
conceptions of the language XSLT into the function stack's 
conceptions of the language Refal (i.e. into its corresponding 
linguistic structures), preserving their stack's structure. We could 
be saying about a morphism if there exists a precise definition of 
the stack's structure, which does not depend on the concrete 
programming language. The below-following scheme illustrates 
this injective mapping: 

Table 11. The “morphism” of the stacks.  
<IntXSLT_refal ... >



<F_xslt ... <G_xsl ... > >

The XSLT-stack is moved to:       ↓↓↓↓  
<IntXSLT_refal … <IntXSLT_refal  >  > 

 <F_xsl ...  <G_xsl ... >  >  

The one-level denotation: 

<IntXSLTF_xslt_refal ... <IntXSLTG_xslt_refal ... >> 

In the scheme the nesting of the calls corresponds to their 
composition. The lower line is an object to be transformed with 
the upper line, the arguments of the upper calls either are disposed 
directly on the upper line or are enclosed with the projection of 
the corresponding upper angle brackets to the lower line. 

Therefore, the information about the function stack's properties of 
a part of the being interpreted data becomes indirectly available 
for SCP4 and, as a consequence of that, this information is 
processed with the tools for analyzing namely the function stack's 
structures (see [25],[27]), but not with the general tools for 
treating arbitrary data of an unknown nature. 

The input point for an XSLT-program is not indicated in its 
syntax, but is defined inside the body of an XML-
document [34],[33]. That causes the partial function to be 
evaluated in run-time is not determined during the specialization 
of the XSLT-interpreter w.r.t. a given XSLT-program, while the 
XML-document is unknown. A logical consequence of this 
circumstance: in supercompile-time all possible variants of the 
partial functions, which can appear in run-time, have to be 
considered (by definition of the interpreter). And, hence, more 
non-informative (general) variants of the generalization [25],[24] 
of the data of the XSLT-interpreter are created. The essence of our 
repeated supercompilation (see the section [3.5.2]) is the cleaning 
of the result of the first supercompilation, when one declares that 
the input point should be a call of the first (defined in the XSLT 
program) template. It is interesting to note that after the first phase 
of the transformations the "garbage" inside the residual programs 
is trivial (see the residual programs in [11]), even though, 
naturally, they contain some XSLT-terms. Apparently, this is 
associated with the global logic of the considered XSLT-programs 
(and, certainly, with the logic of the XSLT-semantics), which 
contradicts a more or lesser substantial definition of the partial 
functions, which the author of the XSLT-programs did not 
develop as self-dependent semantic entities.  

Repeated supercompilation does matter. There exists another 
evidently reason for that: the simplest elementary transformations 
being performed with the supercompiler SCP4, sure, do not 
commute, hence, the repeated supercompilation can produce more 
effective result than the first supercompilation. 

Example: Let the following Refal program be an input to Scp4. 

$ENTRY Go { e.number = <UnarySum (I) (e.number)>; } 
UnarySum { 
(e.numb1) (I e.numb2) = I <UnarySum (e.numb1) (e.numb2)>; 
(e.numb1) () = e.numb1; 
} 

This definition of the unary addition (being viewed separately 
from the context of the function call) does not provide any 
information about the output structure of the function UnarySum. 

After the specialization w.r.t. the call context, a non-trivial output 
format I e.out will be derived. The specialization w.r.t. this output 
information takes place later than the global analyzing for the 
property of identity  (see [19]), so the residual recursive 
component cannot be recognized as a syntactic identity function.  

The result of the first supercompilation is: 

$ENTRY Go { e.number = I <F7 e.number >; } 
F7 { 
I e.1 = I <F7 e.1 >; 
        = ; 
} 

Now we again input the result program to Scp4 and obtain the 
following perfect residual program 

$ENTRY Go { e.number = I  e.number; } 

5. CONCLUSION 
We have described a number of experiments with the 
supercompiler Scp4 (see [17],[18]). We have implemented an 
interpreter of an algorithmically universal fragment of the 
language XSLT. The interpreter is written in a functional 
programming language Refal. We have specialized the interpreter 
with respect to a Turing Machine interpreter written in XSLT, 
when the last interpreter has to evaluate the given programs for 
the TM. After that we input the SCP4's outputs again to the 
supercompiler. The supercompiler SCP4 cleaned this double 
interpretation and constructed algorithms in Refal substantially 
coinciding with the algorithms written in the TM-language. The 
examples we presented show considerable speedup after the two 
supercompilations. 
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ATTACHMENT 1 

TMNDoublePQ.xsl 
<!--     ================================================================================== --> 
<!--  TMNDoublePQ.xsl --> 
<!--  An interpreter of the Turing Machine. --> 
<!--      ================================================================================== --> 
<!-- Example of the program for the Turing Machine. --> 
<!-- The program replaces an array of the characters P with another array, where each of the Ps was changed with two Qs --> 
<!-- (one per cell). If, for instance, in the beginning of the TM's job there are exactly ten of the characters P on the tape --> 
<!-- (followed one by another) and the pointer indicates to the first of them, then, when the machine will stop, the tape will --> 
<!-- contain twenty Qs followed one by another. The tape's borders are being worked on: the empty cells are added on --> 
<!-- the left hand and the right hand of the tape, if that is necessary. --> 
<!--      ================================================================================== --> 

 

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:xt="http://www.jclark.com/xt" version="1.0"> 
 

<!--  TMNDoublePQ.xsl 
****************************************************************************************************** * 
*    The interpreter of Turing Machine interprets a concrete Turing Machine. * 
*     Initially, the concrete machine is put inside a program (i.e. the concrete machine is just a part of this XSLT-program). * 
*     * 
*     The instruction has the form: (CurrState   CurrSymb   NextSymb   NextState   Move). * 
*     The instruction is executed if the machine is in the configuration (CurrState   CurrSymb). That is to say, its internal state * 
*     is the CurrState and the symbol scanned under the head is the CurrSymb. The execution consists in overwriting * 
*     the cell's contents under the head with the symbol NextSymb, in moving the head from the current cell to its adjacent * 
*     neighbor in the direction indicated by the Move and in  changing the internal current state with the NextState. * 
*     A program consists of a finite number of the instructions. There exists at least one instruction with the start state "start". * 
*     There can be instructions with the finish state "stop". The program starts with an instruction with the start state. * 
*     The execution of the program consists in stepwise executing of the instructions. * 
*     The input to the TM is a finite array of rightward cells. * 
****************************************************************************************************** * 
--> 

 

<!-- The concrete Turing Machine: replacement of Ps with double Qs on the tape. --> 
 

<!--   *************************************************************************** --> 
<!--   The interpreter itself. --> 
<!--   *************************************************************************** --> 

 

<xsl:template match="Go"> 
 <xsl:call-template name="Go2"> 
 <xsl:with-param name="TMS"> 
 <TMState> 
 <Instruction CurrState="start" CurrSymb="B" NextSymb="B" NextState="stop" Movement="right"> 
 <Instruction CurrState="start" CurrSymb="Q" NextSymb="Q" NextState="start" Movement="right"> 
 <Instruction CurrState="start" CurrSymb="P" NextSymb="Q" NextState="moveleft" Movement="left" > 
 <Instruction CurrState="moveleft" CurrSymb="Q" NextSymb="Q" NextState="moveleft" Movement="left" > 
 <Instruction CurrState="moveleft" CurrSymb="B" NextSymb="Q" NextState="start" Movement="right"> 
 </Instruction> 
 </Instruction> 
 </Instruction> 
 </Instruction> 
 </Instruction> 
 <!-- The end of the concrete Turing Machine. --> 



 <State>start</State> 
 <LeftTape> 
 <Nod><Cell>B</Cell><Nod><Cell>B</Cell> 
 <Nod><N/></Nod> 
 </Nod></Nod> 
 </LeftTape> 
 <xsl:copy-of select="Symbol"/> 
 <xsl:copy-of select="RightTape"/> 
 </TMState> 
 </xsl:with-param> 
 </xsl:call-template> 
 
</xsl:template> 

        

<!--   ================================================================ --> 
<!--   The head template. --> 
<!--   ================================================================ --> 

 

<xsl:template name="Go2"> 
<xsl:param name="TMS"/> 
<xsl:for-each select="xt:node-set($TMS)/TMState"> 
 
<xsl:choose> 
 
<xsl:when test="State='stop'"> 
 <tm> 
 <xsl:copy-of select="LeftTape"/> 
 <xsl:copy-of select="Symbol"/> 
 <xsl:copy-of select="RightTape"/> 
 </tm> 
</xsl:when> 
 
<xsl:otherwise> 
 <xsl:call-template name="Go2"> 
 <xsl:with-param name="TMS"> 
 <TMState> 
 <xsl:copy-of select="Instruction"/> 
 <xsl:call-template name="Step"> 
 <xsl:with-param name="TMS"> 
 <TMState> 
 <xsl:copy-of select="Instruction"/> 
 <xsl:copy-of select="State"/> 
 <xsl:copy-of select="LeftTape"/> 
 <xsl:copy-of select="Symbol"/> 
 <xsl:copy-of select="RightTape"/> 
 </TMState> 
 </xsl:with-param> 
 </xsl:call-template> 
 </TMState> 
 </xsl:with-param> 
 </xsl:call-template> 
</xsl:otherwise> 
 
</xsl:choose> 
</xsl:for-each> 
</xsl:template> 

 

<!--   ================================================================ --> 
<!--   One step of the Turing Machine. --> 



<!--   ================================================================ --> 
 

<xsl:template name="Step"> 
 <xsl:param name="TMS"/> 
<xsl:for-each select="xt:node-set($TMS)/TMState"> 
 
<xsl:choose> 
 
<xsl:when test="Instruction/@CurrState=State"> 
 <xsl:choose> 
 <xsl:when test="Instruction/@CurrSymb=Symbol"> 
 <xsl:choose> 
 <xsl:when test="Instruction/@Movement='right'"> 
 <State> 
 <xsl:value-of select="Instruction/@NextState"/> 
 </State> 
 <LeftTape> 
 <Nod> 
 <Cell> 
 <xsl:value-of select="Instruction/@NextSymb"/> 
 </Cell> 
 <xsl:copy-of select="LeftTape/Nod"/> 
 </Nod> 
 </LeftTape> 
 <Symbol> 
 <xsl:value-of select="RightTape/Nod/Cell"/> 
 </Symbol> 
 <RightTape> 
 <Nod> 
 <xsl:for-each select="RightTape/Nod/Nod"> 
 <xsl:apply-templates/> 
 </xsl:for-each> 
 </Nod> 
 </RightTape> 
 </xsl:when> 
  
 <xsl:when test="Instruction/@Movement='left'"> 
 <State> 
 <xsl:value-of select="Instruction/@NextState"/> 
 </State> 
 <LeftTape> 
 <Nod> 
 <xsl:for-each select="LeftTape/Nod/Nod"> 
 <xsl:apply-templates/> 
 </xsl:for-each> 
 </Nod> 
 </LeftTape> 
 <Symbol> 
 <xsl:value-of select="LeftTape/Nod/Cell"/> 
 </Symbol> 
 <RightTape> 
 <Nod> 
 <Cell> 
 <xsl:value-of select="Instruction/@NextSymb"/> 
 </Cell> 
 <xsl:copy-of select="RightTape/Nod"/> 
 </Nod> 
 </RightTape> 
 </xsl:when> 
 </xsl:choose> 



 </xsl:when> 
  
 <xsl:otherwise> 
 <xsl:call-template name="Step"> 
 <xsl:with-param name="TMS"> 
 <TMState> 
 <xsl:copy-of select="Instruction/Instruction"/> 
 <xsl:copy-of select="State"/> 
 <xsl:copy-of select="LeftTape"/> 
 <xsl:copy-of select="Symbol"/> 
 <xsl:copy-of select="RightTape"/> 
 </TMState> 
 </xsl:with-param> 
 </xsl:call-template> 
 </xsl:otherwise> 
 </xsl:choose> 
</xsl:when> 
 
<xsl:otherwise> 
 <xsl:call-template name="Step"> 
 <xsl:with-param name="TMS"> 
 <TMState> 
 <xsl:copy-of select="Instruction/Instruction"/> 
 <xsl:copy-of select="State"/> 
 <xsl:copy-of select="LeftTape"/> 
 <xsl:copy-of select="Symbol"/> 
 <xsl:copy-of select="RightTape"/> 
 </TMState> 
 </xsl:with-param> 
 </xsl:call-template> 
</xsl:otherwise> 
 
</xsl:choose> 
</xsl:for-each> 
</xsl:template> 

 

<!--   ================================================================ --> 
<!--   Processing of the end of the tape. --> 
<!--   ================================================================ --> 

 

<xsl:template match="N"> 
 <Cell>B</Cell> 
 <Nod><Cell>B</Cell> 
 <Nod><N/> 
 </Nod></Nod> 
</xsl:template> 
 
<xsl:template match="Nod"> 
 <xsl:copy-of select="."/> 
</xsl:template> 
 
<xsl:template match="Cell"> 
 <xsl:copy-of select="."/> 
</xsl:template> 

 

<!--   *************************************************************************** --> 
<!--   The end. --> 
<!--   *************************************************************************** --> 

 



</xsl:stylesheet> 

 
TMN.dtd 

<!--     ================================================================================== --> 
<!--    TMN.dtd --> 
<!--    The description of the domains of the programs:   TMNPQ.xsl and TMNDoublePQ.xsl. --> 
<!--    ================================================================================== --> 

 

<!ELEMENT Go (Symbol, RightTape)> 
<!ELEMENT TMState (Instruction, State, LeftTape, Symbol, RightTape) > 
<!ELEMENT LeftTape  (Nod) > 
<!ELEMENT RightTape (Nod) > 
<!ELEMENT Nod ((Cell, Nod) | N) > 
<!ELEMENT Symbol    (#PCDATA) > 
<!ELEMENT Cell      (#PCDATA) > 
<!ELEMENT State     (#PCDATA) > 
<!ELEMENT N         (#PCDATA) > 
<!ELEMENT Instruction (Instruction | EMPTY) > 
<!ATTLIST Instruction 
 CurrState CDATA #IMPLIED 
 CurrSymb CDATA #IMPLIED 
 NextSymb CDATA #IMPLIED 
 NextState CDATA #IMPLIED 
 Movement CDATA #IMPLIED > 

 

TMN.xml 
<!--     ================================================================================== --> 
<!--    TMN.xml --> 
<!--    The input tape to the programs:   TMNPQ.xsl and TMNDoublePQ.xsl. --> 
<!--    ================================================================================== --> 

 

<!DOCTYPE Go SYSTEM "TMN.dtd"> 
 
<Go> 
 
<Symbol>P</Symbol> 
 
<RightTape> 
<Nod><Cell>P</Cell><Nod><Cell>P</Cell><Nod><Cell>P</Cell> 
<Nod><Cell>P</Cell><Nod><Cell>P</Cell><Nod><Cell>P</Cell> 
<Nod><Cell>P</Cell> 
<Nod><N/></Nod> 
</Nod></Nod></Nod></Nod></Nod></Nod></Nod> 
</RightTape> 
 
</Go> 

 

The other documents can be found in  www.refal.net/~korlukov/demo_scp4xslt.zip .  

http://www.refal.net/~korlukov/demo_scp4xslt.zip

